Accurate measurement of bean particle size is essential for automated grading and quality control in agricultural processing.However,existing image segmentation methods often suffer from low efficiency,over-segmentati...Accurate measurement of bean particle size is essential for automated grading and quality control in agricultural processing.However,existing image segmentation methods often suffer from low efficiency,over-segmentation,and high computational cost.We proposed a distancegradient dual constrained watershed algorithm for precise segmentation and measurement of bean particles.The method integrated distance transform-based seed extraction with gradient-constrained flooding,effectively suppressing noise-induced region fragmentation and improving the separation of adherent particles.An experimental platform was constructed using an industrial camera and an image-processing pipeline to evaluate performance.Compared with the conventional watershed algorithm,the proposed method improves segmentation accuracy by 7.2%and reduces the mean particle size error by 27.8%(0.13 mm,representing a relative error of 2.4%).Validation on three soybean varieties confirmed the robustness and generalizability of the approach.The results indicated that the proposed algorithm provided an efficient and accurate technique for agricultural particle size analysis,offering potential for integration into practical low-cost inspection systems.展开更多
The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite traj...The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob- tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti- tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel- lites.展开更多
For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ...For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ones based on rotation vector in accuracy is analyzed in the case of the rotation of navigation frame.By comparing the update algorithm of the gravitational velocity in dual quaternion solution with the compensation algorithm of the harmful acceleration in traditional velocity solution,the accuracy advantage of the gravitational velocity based on dual quaternion is addressed.In view of the idea of the attitude and velocity algorithm based on dual quaternion,an improved navigation algorithm is proposed,which is as much as the rotation vector algorithm in computational complexity.According to this method,the attitude quaternion does not require compensating as the navigation frame rotates.In order to verify the correctness of the theoretical analysis,simulations are carried out utilizing the software,and the simulation results show that the accuracy of the improved algorithm is approximately equal to the dual quaternion algorithm.展开更多
We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix mea...We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large- amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
One class of effective methods for the optimization problem with inequality constraints are to transform the problem to a unconstrained optimization problem by constructing a smooth potential function. In this paper, ...One class of effective methods for the optimization problem with inequality constraints are to transform the problem to a unconstrained optimization problem by constructing a smooth potential function. In this paper, we modifies a dual algorithm for constrained optimization problems and establishes a corresponding improved dual algorithm; It is proved that the improved dual algorithm has the local Q-superlinear convergence; Finally, we performed numerical experimentation using the improved dual algorithm for many constrained optimization problems, the numerical results are reported to show that it is valid in practical computation.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and...Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and a novel scalable and unified architecture for Montgomery inverse hardware in finite fields GF(p) and GF(2n) is proposed. Furthermore, this architecture based on the new modular inversion algorithm has been verified by modeling it in Verilog-HDL, and accomplished it under 0.18 μm CMOS technology. The result indicates that our work has better performance and flexibility than other works.展开更多
A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm f...A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek.For selected precipitation and non-meteorological events,the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values.The membership functions and weights are then determined by these density functions.Finally,the nonmeteorological echoes are identified by combining the membership functions and weights.The performance is qualitatively evaluated by long-term rain accumulation.The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection(POD),false alarm rate(FAR),and clutter–signal ratio(CSR).In addition,the issues in using filtered dual-polarization data are alleviated.展开更多
Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simpl...Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.展开更多
Global navigation satellite system could provide accurate positioning results in signal complete condition. However, the performance is severe when signal denied, especially for the single-mode Bei Dou receiver. This ...Global navigation satellite system could provide accurate positioning results in signal complete condition. However, the performance is severe when signal denied, especially for the single-mode Bei Dou receiver. This paper proposes a dual-satellite positioning algorithm to promote the positioning performance in the satellite signal gap. The new algorithm utilizes the previous positioning data stored in complete condition to simplify the positioning equations. As the clock bias persists for a short period, this proposed method could work out accurate positioning results by only two visible satellites, without the need of computing the clock bias. Also, the Kalman filtering algorithm is used to smooth the trajectories, and improve the positioning results. During the incomplete period, only two satellites for 30 seconds and three satellites for 60 seconds, the preliminary experiment result shows that, the presented method could provide almost the same positioning results as in complete condition.展开更多
In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. Th...In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given.展开更多
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con...A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.展开更多
The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with ch...The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with changing parameter in the dual algorithm is proportional to the reciprocal of the parameter,which is very important for the efficiency of the dual algorithm.At last,the numerical experiments are reported to validate the analysis results.展开更多
A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confini...A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
To address the sensitive and uncertain limitations of single-energy computed tomography(CT)calibration methods in computing proton stopping power ratio during treatment planning,different methods have been proposed us...To address the sensitive and uncertain limitations of single-energy computed tomography(CT)calibration methods in computing proton stopping power ratio during treatment planning,different methods have been proposed using a dual energy CT approach.This paper reviews the most recent dual-energy CT approaches for computing proton stopping power ratio.These include image domain and projection domain methods.The advantages and uncertainties of these methods are analyzed based on existing studies.This paper highlights recent advances in dual energy CT,discussing their implementation,advantages,limitations,and potential for clinical adoption.展开更多
To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ...To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.展开更多
基金supported by National Natural Science Foundation of China(No.62006092)University Synergy Innovation Program of Anhui Province(No.GXXT-2023-108)Excellent Youth Project of Natural Science Research in Anhui Province(No.2023AH030081).
文摘Accurate measurement of bean particle size is essential for automated grading and quality control in agricultural processing.However,existing image segmentation methods often suffer from low efficiency,over-segmentation,and high computational cost.We proposed a distancegradient dual constrained watershed algorithm for precise segmentation and measurement of bean particles.The method integrated distance transform-based seed extraction with gradient-constrained flooding,effectively suppressing noise-induced region fragmentation and improving the separation of adherent particles.An experimental platform was constructed using an industrial camera and an image-processing pipeline to evaluate performance.Compared with the conventional watershed algorithm,the proposed method improves segmentation accuracy by 7.2%and reduces the mean particle size error by 27.8%(0.13 mm,representing a relative error of 2.4%).Validation on three soybean varieties confirmed the robustness and generalizability of the approach.The results indicated that the proposed algorithm provided an efficient and accurate technique for agricultural particle size analysis,offering potential for integration into practical low-cost inspection systems.
基金Supported by the National Natural Science Foundation of China(60974107)the Research Foundation of Nanjing University of Aeronautics and Astronautics(2010219)~~
文摘The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob- tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti- tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel- lites.
基金supported by the National Natural Science Foundation of China(No.61174126)
文摘For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ones based on rotation vector in accuracy is analyzed in the case of the rotation of navigation frame.By comparing the update algorithm of the gravitational velocity in dual quaternion solution with the compensation algorithm of the harmful acceleration in traditional velocity solution,the accuracy advantage of the gravitational velocity based on dual quaternion is addressed.In view of the idea of the attitude and velocity algorithm based on dual quaternion,an improved navigation algorithm is proposed,which is as much as the rotation vector algorithm in computational complexity.According to this method,the attitude quaternion does not require compensating as the navigation frame rotates.In order to verify the correctness of the theoretical analysis,simulations are carried out utilizing the software,and the simulation results show that the accuracy of the improved algorithm is approximately equal to the dual quaternion algorithm.
基金Project supported by the Key Scientific Equipment Development Project of China(Grant No.ZDYZ2013-2)the National High-Tech R&D Program of China(Grant Nos.G128201-G158201 and G128603-G158603)+2 种基金the Innovation Fund of Chinese Academy of Science(Grant No.CXJJ-16M208)the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe Outstanding Young Scientists,Chinese Academy of Sciences
文摘We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large- amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金Supported by the National 863 Project (2003AA002030)
文摘One class of effective methods for the optimization problem with inequality constraints are to transform the problem to a unconstrained optimization problem by constructing a smooth potential function. In this paper, we modifies a dual algorithm for constrained optimization problems and establishes a corresponding improved dual algorithm; It is proved that the improved dual algorithm has the local Q-superlinear convergence; Finally, we performed numerical experimentation using the improved dual algorithm for many constrained optimization problems, the numerical results are reported to show that it is valid in practical computation.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2008AA01Z103)
文摘Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and a novel scalable and unified architecture for Montgomery inverse hardware in finite fields GF(p) and GF(2n) is proposed. Furthermore, this architecture based on the new modular inversion algorithm has been verified by modeling it in Verilog-HDL, and accomplished it under 0.18 μm CMOS technology. The result indicates that our work has better performance and flexibility than other works.
基金supported by a grant(14AWMP-B079364-01) from Water Management Research Program funded by Ministry of Land,Infrastructure and Transport of Korean government
文摘A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek.For selected precipitation and non-meteorological events,the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values.The membership functions and weights are then determined by these density functions.Finally,the nonmeteorological echoes are identified by combining the membership functions and weights.The performance is qualitatively evaluated by long-term rain accumulation.The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection(POD),false alarm rate(FAR),and clutter–signal ratio(CSR).In addition,the issues in using filtered dual-polarization data are alleviated.
文摘Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.
基金partially supported by the National Natural Science Foundation of China under Grant No.61601296, 61601295, and 61671304
文摘Global navigation satellite system could provide accurate positioning results in signal complete condition. However, the performance is severe when signal denied, especially for the single-mode Bei Dou receiver. This paper proposes a dual-satellite positioning algorithm to promote the positioning performance in the satellite signal gap. The new algorithm utilizes the previous positioning data stored in complete condition to simplify the positioning equations. As the clock bias persists for a short period, this proposed method could work out accurate positioning results by only two visible satellites, without the need of computing the clock bias. Also, the Kalman filtering algorithm is used to smooth the trajectories, and improve the positioning results. During the incomplete period, only two satellites for 30 seconds and three satellites for 60 seconds, the preliminary experiment result shows that, the presented method could provide almost the same positioning results as in complete condition.
基金This work was supported by the National Natural Science Foundation of China (No. 60574051).
文摘In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given.
基金National Natural Science Foundation of China(No.61203184)
文摘A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.
文摘The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with changing parameter in the dual algorithm is proportional to the reciprocal of the parameter,which is very important for the efficiency of the dual algorithm.At last,the numerical experiments are reported to validate the analysis results.
基金Supported by the Doctoral Educational Foundation of China of the Ministry of Education(20020486035)
文摘A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
文摘To address the sensitive and uncertain limitations of single-energy computed tomography(CT)calibration methods in computing proton stopping power ratio during treatment planning,different methods have been proposed using a dual energy CT approach.This paper reviews the most recent dual-energy CT approaches for computing proton stopping power ratio.These include image domain and projection domain methods.The advantages and uncertainties of these methods are analyzed based on existing studies.This paper highlights recent advances in dual energy CT,discussing their implementation,advantages,limitations,and potential for clinical adoption.
文摘To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.