期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于改进YOLOv8的实时坑槽检测算法
1
作者 马荣贵 黄训燕 董世浩 《计算机工程》 北大核心 2025年第11期226-234,共9页
针对道路坑槽检测中存在坑槽大小不同、形状不规则导致的特征提取不完全及图像拍摄不满足道路检测车的视角问题,收集并制作不同来源、视角和像素分辨率的坑槽数据集,并对模型进行改进。首先在Backbone部分的C2f结构中引入DCNv3,以获取... 针对道路坑槽检测中存在坑槽大小不同、形状不规则导致的特征提取不完全及图像拍摄不满足道路检测车的视角问题,收集并制作不同来源、视角和像素分辨率的坑槽数据集,并对模型进行改进。首先在Backbone部分的C2f结构中引入DCNv3,以获取更丰富完整的坑槽特征;其次融合压缩和激励(SE)模块的注意力机制,以提高对坑槽特征的提取能力;然后在Neck部分融合双向特征金字塔网络(BiFPN)结构,降低网络的计算量;最后使用Focal-EIoU作为改进模型的损失函数,降低复杂背景对网络检测性能的影响。改进后的YOLOv8-master网络相较于未改进前的网络,坑槽检测精度提高了4.06%,检测速度提高了85帧/s,浮点运算量降低了19.54%。结果表明,所提出的改进方法能有效提高原网络检测坑槽的性能,相比目前主流的目标检测算法,具有一定的先进性。 展开更多
关键词 坑槽检测 可变形卷积 压缩和激励模块 双向特征金字塔网络 Focal-EIoU损失函数
在线阅读 下载PDF
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:3
2
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
基于生成对抗网络的云制造工业服务选择方法 被引量:1
3
作者 郑秀宝 李静 +1 位作者 祝铭 宁莹莹 《计算机科学》 北大核心 2025年第4期54-63,共10页
随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环... 随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环境的自适应能力。因此,文中构建了一种云制造环境下的服务选择模型,提出了一种基于深度学习和生成对抗网络思想的服务选择算法,该模型能够灵活适应环境变化,利用图表示学习方法构建任务服务约束图,根据任务、服务和工业生产约束之间的内在联系学习资源服务特征,在算法改进阶段引入梯度优化和损失函数策略,选择最佳工业资源服务。实验结果表明,所提算法相较于其他对比算法表现出了更强的性能优势。 展开更多
关键词 云制造 工业生产约束 图表示学习 生成对抗网络 梯度损失函数
在线阅读 下载PDF
基于PCF-Net网络的建筑点云立面结构高精度提取
4
作者 臧玉府 王树野 +2 位作者 董震 陈驰 黄荣刚 《测绘学报》 北大核心 2025年第7期1243-1253,共11页
随着数字孪生城市、实景三维建设的应用与推广,基于三维点云城市高精度建模已成为重要研究课题,而建筑立面结构信息是辅助构建高精度三维城市模型的必要信息。因此,如何从点云数据中准确地提取建筑立面结构是精细化建模的研究前提。目前... 随着数字孪生城市、实景三维建设的应用与推广,基于三维点云城市高精度建模已成为重要研究课题,而建筑立面结构信息是辅助构建高精度三维城市模型的必要信息。因此,如何从点云数据中准确地提取建筑立面结构是精细化建模的研究前提。目前,基于深度学习的方法通过神经网络能理解复杂场景、实现目标精准分类,因而得到了广泛应用。然而,在建筑物立面场景中,点云数据存在遮挡严重、噪声极多、点密度差异大等问题,且立面各结构数量比例失衡严重(如门相对窗户的占比极小),使得现有方法难以满足建筑立面结构提取需求。针对该问题,本文围绕建筑立面结构提取在点云采样、特征提取和损失函数3个方面构建了PCF-Net深度学习神经网络。首先,在点云采样的过程中通过附上权重值增加小样本结构点云的比重;然后,设计双分支网络分别提取彩色点云的空间特征和纹理特征,并运用注意力机制自适应融合这两种模态特征,增强对建筑立面复杂场景的描述;最后,设计了顾及交并比(IoU)和提取精度(Acc)的双重约束损失函数以提高建筑立面结构提取的完整度与精确度。试验表明,本文提出的PCF-Net对多种类型的建筑立面提取结构结果分别达到了OA 97.99%,mAcc 97.80%和mIoU 95.75%的精度,而且对于小样本结构提取精度IoU都在90%以上。证明了本文提出的PCF-Net在提取复杂建筑立面结构时的有效性和高精度,为后续高精度三维建模提供了必要的技术支持。 展开更多
关键词 三维建模 建筑立面语义解析 点云采样 双分支网络 注意力融合 损失函数
在线阅读 下载PDF
基于盲环网络和随机恢复掩码的自监督图像去噪
5
作者 梁震远 江松林 朱松豪 《计算机应用》 北大核心 2025年第10期3311-3319,共9页
现有的基于盲点网络的自监督图像去噪方法常因为网络结构的限制,导致图像信息的严重损失。为解决这一问题,首先,提出一种自监督图像去噪方法,通过将传统的盲点网络改进为盲环网络(BRN),进一步降低噪声的空间相关性;其次,针对传统掩码策... 现有的基于盲点网络的自监督图像去噪方法常因为网络结构的限制,导致图像信息的严重损失。为解决这一问题,首先,提出一种自监督图像去噪方法,通过将传统的盲点网络改进为盲环网络(BRN),进一步降低噪声的空间相关性;其次,针对传统掩码策略导致图像信息丢失的问题,提出一种随机恢复掩码(RRM)策略,在减少信息损失的同时,增强去噪结果的细节信息;最后,提出一种双约束损失函数,在防止模型过度拟合的同时,有效保留图像的重要信息。实验结果表明,相较于次优的基于BRN的自监督图像去噪方法,所提方法在SIDD验证数据集上的峰值信噪比(PSNR)提高了0.17 dB,结构相似性(SSIM)提高了0.007,图像块感知相似度(IPPS)降低了0.006,验证了所提方法具有优越的去噪性能。 展开更多
关键词 图像去噪 自监督学习 盲环网络 随机恢复掩码 双约束损失函数
在线阅读 下载PDF
基于RT-DETR改进的织物疵点检测算法
6
作者 朱胜利 李明 何志奇 《毛纺科技》 北大核心 2025年第8期118-127,共10页
为了解决织物疵点检测中疵点类型多、大小不平衡和小目标疵点难以检测的问题,基于RT-DETR(Real-Time DEtection TRansformer)提出了一种改进的织物疵点检测算法FD-DETR(Fabric Defect-DETR)。将可变形注意力机制模块DA(Deformable Atten... 为了解决织物疵点检测中疵点类型多、大小不平衡和小目标疵点难以检测的问题,基于RT-DETR(Real-Time DEtection TRansformer)提出了一种改进的织物疵点检测算法FD-DETR(Fabric Defect-DETR)。将可变形注意力机制模块DA(Deformable Attention)引入特征交互模块AIFI(Attention-based Intrascale Feature Interaction)来增强算法对疵点感受野的适应性,以更好地实现对不同类型和不同大小疵点的检测;在Neck层将Slim-Neck与加权双向特征金字塔Bi-FPN相结合形成GVBi-FPN模块以替换CCFM模块,降低模型复杂度的同时提高对小疵点的检测能力;在分类损失部分将RT-DETR的原分类损失函数Varifocal Loss与Slide Loss结合为Slide Varifocal Loss,提高困难样本的训练权重,使算法注重更难检测的目标以提高困难样本的检测精度。结果表明:在检测20类疵点时,相较RT-DETR,FD-DETR算法的参数量有所降低,并且在mAP@0.5方面提高了3.3%,mAP@0.5∶0.95方面提高了1.7%,实现了45.3帧/s的检测速度,能够快速准确的对不同大小疵点进行检测,有效提升算法性能。 展开更多
关键词 织物疵点检测 RT-DETR 加权双向特征金字塔 可变形注意力 损失函数
在线阅读 下载PDF
基于IEA-T和CNN-BiLSTM-SimAM的锂离子电池健康状态估计
7
作者 张朝龙 刘梦玲 +4 位作者 张俣峰 陈阳 华国庆 谢敏 江乐阳 《武汉大学学报(理学版)》 北大核心 2025年第3期385-394,共10页
为提升锂离子电池健康状态(SOH)估计的准确性,克服现有估计方法无法全面刻画电池衰退细节的局限,提出一种融合距离交并比损失函数(DIoUloss)与无参注意力机制(SimAM)的多特征卷积神经网络-双向长短期记忆网络(CNNBiLSTM)的锂电池SOH估... 为提升锂离子电池健康状态(SOH)估计的准确性,克服现有估计方法无法全面刻画电池衰退细节的局限,提出一种融合距离交并比损失函数(DIoUloss)与无参注意力机制(SimAM)的多特征卷积神经网络-双向长短期记忆网络(CNNBiLSTM)的锂电池SOH估计方法。该方法将锂离子电池增量能量面积(IEA)和充电时长(T)组成IEA-T特征用于电池SOH的估计,将DIoUloss函数和SimAM机制融合于CNN-BiLSTM模型,建立CNN-BiLSTM-SimAM锂离子电池SOH估计模型。对锂离子电池的循环老化实验进行测试,相比起GRU、SVR、CNN-LSTM和CNN-BiLSTM等方法,本文提出的方法能更有效地表征电池健康的衰退细节,决定系数高于0.96,均方根误差低于0.020,表现出良好的准确性和效率。 展开更多
关键词 锂离子电池 健康状态(SOH) 卷积神经网络-双向长短期记忆网络(CNN-BiLSTM) 距离交并比损失(DIoUloss)函数 无参注意力机制(SimAM) 增量能量
原文传递
Look-ahead Dispatch of Power Systems Based on Linear Alternating Current Optimal Power Flow Framework with Nonlinear Frequency Constraints Using Physics-informed Neural Networks
8
作者 Guoqiang Sun Qihui Wang +2 位作者 Sheng Chen Zhinong Wei Haixiang Zang 《Journal of Modern Power Systems and Clean Energy》 2025年第3期778-790,共13页
The increasing penetration of renewable energy resources degrades the frequency stability of power systems.The present work addresses this issue by proposing a look-ahead dispatch model of power systems based on a lin... The increasing penetration of renewable energy resources degrades the frequency stability of power systems.The present work addresses this issue by proposing a look-ahead dispatch model of power systems based on a linear alternating current optimal power flow framework with nonlinear frequency constraints.Meanwhile,the poor efficiency for solving this formulation is addressed by introducing a physics-informed neural network(PINN)to predict key frequency-control parameter values accurately.The PINN ensures that the learned results are applicable to the original physical frequency dynamics model,and applying the predicted parameter values enables the resulting dispatch model to be solved quickly and efficiently using readily available commercial solvers.The feasibility and advantages of the proposed model are demonstrated by the results of numerical computations applied to a modified IEEE 118-bus test system. 展开更多
关键词 Frequency stability physics-informed neural network optimal power flow(OPF) loss function frequency constraint look-ahead dispatch
原文传递
基于改进YOLOv5的线束连接器目标检测算法
9
作者 胡永鑫 管宝 《现代工业经济和信息化》 2025年第1期103-105,共3页
针对线束连接器自动装配系统的设计需求,提出了一种改进的YOLOv5目标检测算法。通过现场图像采集创建数据集后,对原有模型进行修改:替换C3模块为C2f以提高检测的准确性和鲁棒性,采用Focal-EIOU损失函数来调整难易样本权重并增强对连接... 针对线束连接器自动装配系统的设计需求,提出了一种改进的YOLOv5目标检测算法。通过现场图像采集创建数据集后,对原有模型进行修改:替换C3模块为C2f以提高检测的准确性和鲁棒性,采用Focal-EIOU损失函数来调整难易样本权重并增强对连接器插孔的关注度,引入双向特征金字塔网络来优化多尺度特征融合效率。经过这些改进,模型的检测精度提升至98.0%,相比原模型提升了3.4%,满足了自动装配系统的设计需求。 展开更多
关键词 YOLOv5 线束连接器 Focal-EIOU损失函数 双向特征金字塔网络(BiFPN)自动装配
在线阅读 下载PDF
改进YOLOv5的织物缺陷检测方法 被引量:4
10
作者 朱磊 王倩倩 +2 位作者 姚丽娜 潘杨 张博 《计算机工程与应用》 CSCD 北大核心 2024年第20期302-311,共10页
为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络... 为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络,从而提高网络对缺陷区域纹理和语义特征的提取能力;采用鬼影混洗卷积改进特征融合子网络,强化对提取特征的筛选,在降低模型参数量的同时,改善缺陷信息丢失和无效信息冗余问题;在检测端引入具有角度损失的新型损失函数SIOU,来促进真实框和预测框的拟合并提升对缺陷预测的准确性。实验结果表明:改进的YOLOv5方法在降低YOLOv5基准模型复杂度和计算量的同时,与YOLOv7等六种先进方法相比,可获得更高的检测精度,相较原模型mAP@0.5值提高了2.6个百分点,mAP@0.5:0.9值提高了1.3个百分点。 展开更多
关键词 织物缺陷检测 卷积神经网络 YOLOv5 双级联注意力机制 损失函数
在线阅读 下载PDF
改进YOLOv5s的钢轨表面缺陷检测算法 被引量:4
11
作者 李军 许炫皓 王耀弘 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第8期130-137,共8页
针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用... 针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用改进的卷积结构,降低模型复杂度,同时提升检测精度;最后引入WIoU损失函数提升低质量样本预测能力。该方法在2种不同类别的数据集中都具有较好的表现,在RailDefect公共数据集上,其平均精度均值(mAP)达到91.2%,较YOLOv5s网络提高了3.6%,准确率(precision)和召回率(recall)分别提高了3.3%和3.9%。该算法在保证较高检测精度的同时降低了模型复杂度,更适合部署于算力有限的移动端轨道检测设备中,具有一定的实用价值。 展开更多
关键词 钢轨多类别缺陷 YOLOv5s 注意力机制 加权双向特征融合网络 损失函数
在线阅读 下载PDF
一种融合注意力机制的CNN-BiGRU磁盘故障预测方法研究 被引量:1
12
作者 王艳 刘亚东 +1 位作者 皮婵娟 施君豪 《大数据》 2024年第5期109-122,共14页
磁盘作为重要的存储介质,一旦出现故障很可能会导致存储数据丢失,给个人及企业带来难以估量的损失。现有磁盘故障预测模型存在不能很好地平衡磁盘数据样本、未充分利用磁盘数据的时序特性等问题。以Backblaze云存储公司公布的真实磁盘... 磁盘作为重要的存储介质,一旦出现故障很可能会导致存储数据丢失,给个人及企业带来难以估量的损失。现有磁盘故障预测模型存在不能很好地平衡磁盘数据样本、未充分利用磁盘数据的时序特性等问题。以Backblaze云存储公司公布的真实磁盘数据为研究对象,提出了一种融合注意力机制的卷积神经网络(CNN)和双向门控循环单元(BiGRU)网络的磁盘故障预测模型。在数据预处理方面,采用负采样与焦点损失函数来平衡正负样本,利用CNN进行特征提取,并结合BiGRU网络来有效地处理时序数据。通过融合注意力机制,能够让模型快速地捕捉更多关键特征信息,将筛选出的特征与数据输入模型进行训练。通过对比其他故障预测模型,本文提出的模型在精确率等4个评价指标上均有1%~7%的性能提升,为提高磁盘存储的可靠性提供了有力的支撑。 展开更多
关键词 注意力机制 磁盘故障预测 双向门控循环单元 卷积神经网络 焦点损失函数
在线阅读 下载PDF
基于改进DDRNet网络的遥感影像山体滑坡识别 被引量:1
13
作者 杨利亚 俞淑洋 +1 位作者 杨静 殷非凡 《北京测绘》 2024年第3期393-397,共5页
山体滑坡是一种极具毁灭性的自然灾害,滑坡灾害识别和调查是预防灾害工作的重要基础。传统山体滑坡识别方法、识别精度和自动化程度均较低,为此,本文提出一种基于深度学习分割网络的山体滑坡识别算法。首先,使用双分辨率网络模型作为主... 山体滑坡是一种极具毁灭性的自然灾害,滑坡灾害识别和调查是预防灾害工作的重要基础。传统山体滑坡识别方法、识别精度和自动化程度均较低,为此,本文提出一种基于深度学习分割网络的山体滑坡识别算法。首先,使用双分辨率网络模型作为主干网络,然后在主干网络中添加卷积注意力机制模块,以增加模型对滑坡特征提取能力,最后在训练阶段添加辅助损失函数,以增加模型对滑坡特征拟合能力。实验表明:与常用的分割模型相比,准确率、召回率、F1得分和平均交并比均有5%左右提升,参数量下降2/3左右;表示所提模型具有较好的滑坡检测能力,可高效精确定位滑坡位置。 展开更多
关键词 山体滑坡识别 双分辨率网络分割模型 卷积注意力机制结构 辅助损失函数
在线阅读 下载PDF
基于多视图与注意力机制的睡眠脑电分期 被引量:4
14
作者 李兰亭 苗敏敏 《国外电子测量技术》 2024年第1期30-37,共8页
为了更全面地对睡眠脑电进行特征提取,提出一种基于多视图与注意力机制的睡眠脑电分期方法。首先针对原始睡眠脑电信号构造时域和时频域两类视图数据;然后设计融合注意力机制的混合神经网络对多视图数据进行表征学习;接着通过双向长短... 为了更全面地对睡眠脑电进行特征提取,提出一种基于多视图与注意力机制的睡眠脑电分期方法。首先针对原始睡眠脑电信号构造时域和时频域两类视图数据;然后设计融合注意力机制的混合神经网络对多视图数据进行表征学习;接着通过双向长短时记忆(bi-directional long short-term memory,BiLSTM)网络进一步学习睡眠阶段之间的转换规则;最后使用Softmax函数进行睡眠分期,并利用类别加权损失函数解决睡眠数据类别不均衡的问题。实验使用Sleep-EDF数据库中前20名受试者的单通道脑电信号并采用20折交叉验证对模型进行性能评估,睡眠分期准确率达到83.7%,宏平均F_(1)值达到79.0%,Cohen′s Kappa系数达到0.78。与现有方法相比,算法性能提升明显,证明了所提方法的有效性。 展开更多
关键词 睡眠分期 多视图 注意力机制 双向长短时记忆网络 类别加权损失函数
原文传递
面向动态场景去模糊的对偶学习生成对抗网络
15
作者 纪野 戴亚平 +1 位作者 廣田薰 邵帅 《控制与决策》 EI CSCD 北大核心 2024年第4期1305-1314,共10页
针对动态场景下的图像去模糊问题,提出一种对偶学习生成对抗网络(dual learning generative adversarial network,DLGAN),该网络可以在对偶学习的训练模式下使用非成对的模糊图像和清晰图像进行图像去模糊计算,不再要求训练图像集合必... 针对动态场景下的图像去模糊问题,提出一种对偶学习生成对抗网络(dual learning generative adversarial network,DLGAN),该网络可以在对偶学习的训练模式下使用非成对的模糊图像和清晰图像进行图像去模糊计算,不再要求训练图像集合必须由模糊图像与其对应的清晰图像成对组合而成.DLGAN利用去模糊任务与重模糊任务之间的对偶性建立反馈信号,并使用这个信号约束去模糊任务和重模糊任务从两个不同的方向互相学习和更新,直到收敛.实验结果表明,在结构相似度和可视化评估方面,DLGAN与9种使用成对数据集训练的图像去模糊方法相比具有更好的性能. 展开更多
关键词 动态场景去模糊 对偶学习 生成对抗网络 注意力引导 特征图损耗函数
原文传递
基于YOLOv8改进的脑癌检测算法
16
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 bidirectional Feature Pyramid network结构 Missed Softplus with Identity Shortcut激活函数 Minimum Point Distance Intersection over Union损失函数
在线阅读 下载PDF
基于文本特征融合的双流生成对抗修复网络
17
作者 刘婷婷 陈明举 李兰 《四川轻化工大学学报(自然科学版)》 CAS 2024年第4期36-46,共11页
为解决深度学习技术存在特征挖掘不充分、语义表达不完整等问题,消除修复图像存在伪影或模糊纹理等现象,本文构建了上下文特征融合的双流生成对抗修复网络,以实现重建、感知与风格损失的补偿,从而使修复后的图像实现全局一致性。该网络... 为解决深度学习技术存在特征挖掘不充分、语义表达不完整等问题,消除修复图像存在伪影或模糊纹理等现象,本文构建了上下文特征融合的双流生成对抗修复网络,以实现重建、感知与风格损失的补偿,从而使修复后的图像实现全局一致性。该网络采用融入注意力机制的U-Net作为主干网络,充分提取图像结构和纹理特征。采用上下文本特征融合网络充分挖掘图像高级语义及特征信息的上下文关系,实现空洞区域的结构及纹理特征的填充与精细修复。采用结构与纹理双流鉴别器来估计纹理和结构的特征并统计信息来区分真实图像和生成图像。采用基于语义的联合损失函数以增强修复图像在语义上的真实性。将本文算法与对比算法中表现最好的CTSDG算法在CelebA和Places2数据集上进行对比,其中PSNR与SSIM值在CelebA上分别提升2.74 dB和5.80%,FID下降4.02;PSNR与SSIM值在Place2上分别提升4.15 dB和3.33%,FID下降2.33。因此,改进的图像修复方法的客观评价指标更优,能够更加有效地修复破损图像的结构和纹理信息,使得图像修复的性能更佳。 展开更多
关键词 注意力机制 双流结构 生成对抗网络 双流鉴别器 联合损失函数
在线阅读 下载PDF
基于深度学习特征融合和联合约束的单通道语音分离方法 被引量:5
18
作者 孙林慧 王灿 +1 位作者 梁文清 李平安 《电子与信息学报》 EI CSCD 北大核心 2022年第9期3266-3276,共11页
为了提高单通道语音分离性能,该文提出基于深度学习特征融合和联合约束的单通道语音分离方法。传统基于深度学习的分离算法的损失函数只考虑了预测值和真实值的误差,这使得分离后的语音与纯净语音之间误差较大。该文提出一种新的联合约... 为了提高单通道语音分离性能,该文提出基于深度学习特征融合和联合约束的单通道语音分离方法。传统基于深度学习的分离算法的损失函数只考虑了预测值和真实值的误差,这使得分离后的语音与纯净语音之间误差较大。该文提出一种新的联合约束损失函数,该损失函数不仅约束了理想比值掩蔽的预测值和真实值的误差,还惩罚了相应幅度谱的误差。另外,为了充分利用多种特征的互补性,提出一种含特征融合层的卷积神经网络(CNN)结构。利用该CNN提取多通道输入特征的深度特征,并在融合层中将深度特征与声学特征融合用来训练分离模型。由于融合构成的特征含有丰富的语音信息,具有强的语音信号表征能力,使得分离模型预测的掩蔽更加准确。实验结果表明,从信号失真比(SDR)、主观语音质量评估(PESQ)和短时客观可懂度(STOI)3个方面评价,相比其他优秀的基于深度学习的语音分离方法,该方法能够更有效地分离目标语音。 展开更多
关键词 语音分离 联合约束 特征融合 损失函数 卷积神经网络
在线阅读 下载PDF
改进YOLOv5s算法在非机动车头盔佩戴检测中的应用 被引量:5
19
作者 张瑞芳 董凤 程小辉 《河南科技大学学报(自然科学版)》 CAS 北大核心 2023年第1期44-53,M0005,共11页
针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,... 针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。 展开更多
关键词 非机动车头盔检测 坐标注意力机制 加权双向特征金字塔网络 EIoU损失函数 YOLOv5s
在线阅读 下载PDF
基于FBEC-YOLOv5s的采掘工作面多目标检测研究 被引量:1
20
作者 张辉 苏国用 赵东洋 《工矿自动化》 CSCD 北大核心 2023年第11期39-45,共7页
针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特... 针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特征提取和语义信息捕捉能力;其次,在YOLOv5s模型颈部融合BiFPN网络,以通过其双向跨尺度连接和快速归一化融合操作,实现多尺度特征的快速捕捉与融合;最后,采用ECIoU损失函数代替CIoU损失函数,以提升检测框定位精度和模型收敛速度。实验结果表明:(1)在满足煤矿井下实时检测要求的同时,FBEC-YOLOv5s模型的准确率较YOLOv5s模型的准确率提升了3.6%。(2)与YOLOv5s模型相比,FBEC-YOLOv5s模型的平均检测精度均值上升了2.8%,平均检测精度均值为92.4%,能够满足实时检测要求。(3)FBEC-YOLOv5s模型的综合检测性能好,能够在恶劣环境、多目标间相互遮挡严重及目标尺度跨度大导致检测精度降低的情况下表现出良好的实时检测能力且具有较好的鲁棒性。 展开更多
关键词 采掘工作面 多目标检测 FasterNet网络 双向特征金字塔网络 YOLOv5s BiFPN ECIoU损失函数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部