BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and ...BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.展开更多
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra...Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.展开更多
The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are...The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt...Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kina...Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kinase(JAK)signal transducer and activator of transcription(JAK-STAT)pathways play pivotal roles in GC progression,making them attractive targets for therapeutic interventions.Methods:This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.KATOIII and SNU-5 GC cells were used for in vitro evaluation.Results:SBL-JP-0004 exhibited a robust binding affinity for JAK2 and PI3KCD kinases,as evidenced by molecular docking scores and molecular dynamics simulations.Binding interactions and Gibbs binding free energy estimates confirmed stable and favorable interactions with target proteins.SBL-JP-0004 displayed an half-maximal inhibitory concentration(IC_(50))value of 118.9 nM against JAK2 kinase and 200.9 nM against PI3KCD enzymes.SBL-JP-0004 exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells,with half-maximal growth inhibitory concentration(GI50)values of 250.8 and 516.3 nM,respectively.A significant elevation in the early phase apoptosis(28.53%in KATOIII cells and 26.85%in SNU-5 cells)and late phase apoptosis(17.37%in KATOIII cells and 10.05%in SNU-5 cells)were observed with SBL-JP-0004 treatment compared to 2.1%and 2.83%in their respective controls.Conclusion:The results highlight SBL-JP-0004 as a promising dual inhibitor targeting JAK2 and PI3KCD kinases for treating GC and warrant further preclinical and clinical investigations to validate its utility in clinical settings.展开更多
Prosthetic devices designed to assist individuals with damaged or missing body parts have made significant strides,particularly with advancements in machine intelligence and bioengineering.Initially focused on movemen...Prosthetic devices designed to assist individuals with damaged or missing body parts have made significant strides,particularly with advancements in machine intelligence and bioengineering.Initially focused on movement assistance,the field has shifted towards developing prosthetics that function as seamless extensions of the human body.During this progress,a key challenge remains the reduction of interface artifacts between prosthetic components and biological tissues.Soft electronics offer a promising solution due to their structural flexibility and enhanced tissue adaptability.However,achieving full integration of prosthetics with the human body requires both artificial perception and efficient transmission of physical signals.In this context,synaptic devices have garnered attention as next-generation neuromorphic computing elements because of their low power consumption,ability to enable hardware-based learning,and high compatibility with sensing units.These devices have the potential to create artificial pathways for sensory recognition and motor responses,forming a“sensory-neuromorphic system”that emulates synaptic junctions in biological neurons,thereby connecting with impaired biological tissues.Here,we discuss recent developments in prosthetic components and neuromorphic applications with a focus on sensory perception and sensorimotor actuation.Initially,we explore a prosthetic system with advanced sensory units,mechanical softness,and artificial intelligence,followed by the hardware implementation of memory devices that combine calculation and learning functions.We then highlight the importance and mechanisms of soft-form synaptic devices that are compatible with sensing units.Furthermore,we review an artificial sensory-neuromorphic perception system that replicates various biological senses and facilitates sensorimotor loops from sensory receptors,the spinal cord,and motor neurons.Finally,we propose insights into the future of closed-loop neuroprosthetics through the technical integration of soft electronics,including bio-integrated sensors and synaptic devices,into prosthetic systems.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas sh...The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas shoulders the important mission of transitioning the energy consumption structure from high-carbon to low-carbon.展开更多
To address the challenges of varied aircraft skin hole detection types and susceptibility to noise,this paper proposes a method based on the perspective of dual contour edge information fusion.The core method combines...To address the challenges of varied aircraft skin hole detection types and susceptibility to noise,this paper proposes a method based on the perspective of dual contour edge information fusion.The core method combines stereoscopic vision and structured light dual contour information consistently,focusing on extracting edge point information around the hole edge to achieve precise detection of circular holes.In this approach,a line multi-directional gradient feature detector (LMGFD) is introduced for locating the holes from plane stereoscopic image.Furthermore,we establish a three-dimensional (3D) circular hole detection method (BPCircle) based on the dual contour edge information fusion.Finally,experiments demonstrate that our proposed method achieves superior accuracy and robustness based on public benchmark dataset and our own collected standard IPCDS dataset (including two-dimensional (2D)images,3D point clouds,and measured data of three-coordinate measuring machine).The dataset and code can be found from https://github.com/Nicholsdqw/123.展开更多
The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary mate...The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.展开更多
This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named C...This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.展开更多
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy....Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.展开更多
Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and ...Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and Cu)of the anode.Herein,we report the synthesis of a stable three-dimensional network structure of the PAA-PEA(polyacrylic acid-polyether amines)polymer binder through intermolecular physicochemical dual cross-linking.By incorporating polar functional groups,the binder molecules not only form strong C-O-Si,N-Si,O=C-O-C,and O=C-O-Cu covalent bonds but also enhance non-covalent interactions with Si,C,and Cu,thereby improving adhesion between the binder and each interface of the anode.Furthermore,weak hydrogen bonds,acting as"sacrificial bonds",dissipate energy and disperse accumulated stress,improving the material flexibility.Due to the high mechanical stability of the framework,which combines both rigidity and flexibility and the coupling effect at the three interfaces,the movement and separation of electrode components are effectively restrained,significantly enhancing the cycling stability of silicon-graphite anodes.The PAA-PEA 2000 electrode exhibits a capacity retention of 78% after 500 cycles at a current density of 0.2 A g^(-1).This work provides insights into the mechanism of binders and guides the design of polymer binders for high-performance Si-based electrodes.展开更多
Accelerating the separation of carriers in the heterojunction plays vital role in the photoelectrocatalytic(PEC)process,yet it remains a challenging undertaking.Herein,a MOF-on-MOF based dual S-scheme heterojunction(B...Accelerating the separation of carriers in the heterojunction plays vital role in the photoelectrocatalytic(PEC)process,yet it remains a challenging undertaking.Herein,a MOF-on-MOF based dual S-scheme heterojunction(BiVO_(4)/NH_(2)-MIL-125(Ti)/NH_(2)-MIL-53(Fe),denoted as BVO/NM125/NM53)was rationally designed and prepared for PEC removing and detoxification of organic contaminants(phenol,tetracycline hydrochloride,ciprofloxacin and norfloxacin).The S-scheme heterojunction was double confirmed by DFT calculation and XPS analysis.The charge transfer resistance of BVO/NM125/NM53 photoanode decreases to 1/11 of bare BiVO_(4) photoanode.Meanwhile,the photocurrent densitywas 3 times higher,demonstrating a marked improvement in carrier separation efficiency due to dual S-scheme heterojunction.The photoanode achieved 94.3%removal of phenol within 60 min and maintained stable performance over 10 consecutive cycles,demonstrating good PEC efficiency and structural stability.The BVO/NM125/NM53 photoanode also showed effectiveness in removing antibiotics,with chlorophyll fluorescence imaging confirming a significant reduction in the ecotoxicity of intermediates.For example,wheat seed germination,growth,chlorophyll and Carotenoid production were not affected,which was similar to that of deionized water.Radical trapping experiments and electron paramagnetic resonance(EPR)analysis identified·O_(2)^(-)and·OH as the primary active species.This work demonstrates the effectiveness of developing MOF-on-MOF heterojunctions for visible-light response and enhancing charge separation in PEC.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
基金Supported by National High Level Hospital Clinical Research Funding(Youth Clinical Research Project of Peking University First Hospital),No.2023YC27Capital’s Funds for Health Improvement and Research,No.2022-2-40711National High Level Hospital Clinical Research Funding(Interdepartmental Research Project of Peking University First Hospital),No.2024IR20.
文摘BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.
基金supported by the Tianjin Science and Technology Plan Project(No.22JCQNJC01280)the Central Funds Guiding the Local Science and Technology Development of Hebei Province(Nos.226Z1001G and 226Z1012G)+1 种基金the National Natural Science Foundation of China(No.52002109,52071124)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.
基金Project supported by the Key R&D Projects in Hunan Province(2021SK2047,2022NK2044)Science and Technology Innovation Program of Hunan Province(2022WZ1022)Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education(22B0211)。
文摘The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
基金support from the National Natural Science Foundation of China(22209089,22178187)Natural Science Foundation of Shandong Province(ZR2022QB048,ZR2021MB006)+2 种基金Excellent Youth Science Foundation of Shandong Province(Overseas)(2023HWYQ-089)the Taishan Scholars Program of Shandong Province(tsqn201909091)Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University.
文摘Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
文摘Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kinase(JAK)signal transducer and activator of transcription(JAK-STAT)pathways play pivotal roles in GC progression,making them attractive targets for therapeutic interventions.Methods:This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.KATOIII and SNU-5 GC cells were used for in vitro evaluation.Results:SBL-JP-0004 exhibited a robust binding affinity for JAK2 and PI3KCD kinases,as evidenced by molecular docking scores and molecular dynamics simulations.Binding interactions and Gibbs binding free energy estimates confirmed stable and favorable interactions with target proteins.SBL-JP-0004 displayed an half-maximal inhibitory concentration(IC_(50))value of 118.9 nM against JAK2 kinase and 200.9 nM against PI3KCD enzymes.SBL-JP-0004 exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells,with half-maximal growth inhibitory concentration(GI50)values of 250.8 and 516.3 nM,respectively.A significant elevation in the early phase apoptosis(28.53%in KATOIII cells and 26.85%in SNU-5 cells)and late phase apoptosis(17.37%in KATOIII cells and 10.05%in SNU-5 cells)were observed with SBL-JP-0004 treatment compared to 2.1%and 2.83%in their respective controls.Conclusion:The results highlight SBL-JP-0004 as a promising dual inhibitor targeting JAK2 and PI3KCD kinases for treating GC and warrant further preclinical and clinical investigations to validate its utility in clinical settings.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1005567)supported by the NAVER Digital Bio Innovation Research Fund,funded by NAVER Corporation(Grant No.[37-2023-0040])+3 种基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-00261,Development of low power/low delay/self-power suppliable RF simultaneous information and power transfer system and stretchable electronic epineurium for wireless nerve bypass implementation)supported by Institute for Basic Science(IBS-R015-D1,IBSR015-D2)supported by a grant of the Korea-US Collaborative Research Fund(KUCRF)funded by the Ministry of Science and ICT and Ministry of Health&Welfare,Republic of Korea(Grant Number.RS-2024-00467213)。
文摘Prosthetic devices designed to assist individuals with damaged or missing body parts have made significant strides,particularly with advancements in machine intelligence and bioengineering.Initially focused on movement assistance,the field has shifted towards developing prosthetics that function as seamless extensions of the human body.During this progress,a key challenge remains the reduction of interface artifacts between prosthetic components and biological tissues.Soft electronics offer a promising solution due to their structural flexibility and enhanced tissue adaptability.However,achieving full integration of prosthetics with the human body requires both artificial perception and efficient transmission of physical signals.In this context,synaptic devices have garnered attention as next-generation neuromorphic computing elements because of their low power consumption,ability to enable hardware-based learning,and high compatibility with sensing units.These devices have the potential to create artificial pathways for sensory recognition and motor responses,forming a“sensory-neuromorphic system”that emulates synaptic junctions in biological neurons,thereby connecting with impaired biological tissues.Here,we discuss recent developments in prosthetic components and neuromorphic applications with a focus on sensory perception and sensorimotor actuation.Initially,we explore a prosthetic system with advanced sensory units,mechanical softness,and artificial intelligence,followed by the hardware implementation of memory devices that combine calculation and learning functions.We then highlight the importance and mechanisms of soft-form synaptic devices that are compatible with sensing units.Furthermore,we review an artificial sensory-neuromorphic perception system that replicates various biological senses and facilitates sensorimotor loops from sensory receptors,the spinal cord,and motor neurons.Finally,we propose insights into the future of closed-loop neuroprosthetics through the technical integration of soft electronics,including bio-integrated sensors and synaptic devices,into prosthetic systems.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
基金2022 National Social Science Foundation Major Project:Research on the Path of High-quality Development of Natural Gas Industry Driven by Energy Revolution:Research on the Policy Guarantee System for High-quality Development of Natural Gas Industry of Sub-theme V(22&ZD105)2024 Chengdu Soft Science Research Project:Research on the Innovation Mechanism and Risk Prevention and Control of Chengdu's New Energy Industry under the Dual-Carbon Goal(2023-RK00-00174-ZF)2024 Sichuan Petroleum and Natural Gas Development Research Center.Annual Urban Gas Special Project:Mode Construction of High-Quality Transformation and Development of Gas Enterprises(2024SY024)。
文摘The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas shoulders the important mission of transitioning the energy consumption structure from high-carbon to low-carbon.
基金supported by the National Natural Science Foundation Youth (No.62303330)。
文摘To address the challenges of varied aircraft skin hole detection types and susceptibility to noise,this paper proposes a method based on the perspective of dual contour edge information fusion.The core method combines stereoscopic vision and structured light dual contour information consistently,focusing on extracting edge point information around the hole edge to achieve precise detection of circular holes.In this approach,a line multi-directional gradient feature detector (LMGFD) is introduced for locating the holes from plane stereoscopic image.Furthermore,we establish a three-dimensional (3D) circular hole detection method (BPCircle) based on the dual contour edge information fusion.Finally,experiments demonstrate that our proposed method achieves superior accuracy and robustness based on public benchmark dataset and our own collected standard IPCDS dataset (including two-dimensional (2D)images,3D point clouds,and measured data of three-coordinate measuring machine).The dataset and code can be found from https://github.com/Nicholsdqw/123.
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248)Liaoning BaiQianWan Talents Program(LNBQW2018B0048)+8 种基金Shenyang Science and Technology Project(21-108-9-04)Key Research Project of Department of Education of Liaoning Province(LJKZZ20220015)the Research Fund for the Doctoral Program of Liaoning Province(2022-BS-114)Chunhui Program of the Ministry of Education of the People’s Republic of China(202201135)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemes,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021).
文摘The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.
文摘This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.
基金supported by the following funding bodies:the National Key Research and Development Program of China(Grant No.2020YFA0608000)National Science Foundation of China(Grant Nos.42075142,42375148,42125503+2 种基金42130608)FY-APP-2022.0609,Sichuan Province Key Tech nology Research and Development project(Grant Nos.2024ZHCG0168,2024ZHCG0176,2023YFG0305,2023YFG-0124,and 23ZDYF0091)the CUIT Science and Technology Innovation Capacity Enhancement Program project(Grant No.KYQN202305)。
文摘Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.
基金financial support from the National Natural Science Foundation of China[grant number 21878299]。
文摘Polymer binders possess significant potential in alleviating the volume expansion issues of silicon-based anodes,yet remain challenging due to insufficient interfacial interactions with individual components(Si,C,and Cu)of the anode.Herein,we report the synthesis of a stable three-dimensional network structure of the PAA-PEA(polyacrylic acid-polyether amines)polymer binder through intermolecular physicochemical dual cross-linking.By incorporating polar functional groups,the binder molecules not only form strong C-O-Si,N-Si,O=C-O-C,and O=C-O-Cu covalent bonds but also enhance non-covalent interactions with Si,C,and Cu,thereby improving adhesion between the binder and each interface of the anode.Furthermore,weak hydrogen bonds,acting as"sacrificial bonds",dissipate energy and disperse accumulated stress,improving the material flexibility.Due to the high mechanical stability of the framework,which combines both rigidity and flexibility and the coupling effect at the three interfaces,the movement and separation of electrode components are effectively restrained,significantly enhancing the cycling stability of silicon-graphite anodes.The PAA-PEA 2000 electrode exhibits a capacity retention of 78% after 500 cycles at a current density of 0.2 A g^(-1).This work provides insights into the mechanism of binders and guides the design of polymer binders for high-performance Si-based electrodes.
基金supported by the National Natural Science Foundation of China(Nos.22276168 and 21876154)A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202456226)。
文摘Accelerating the separation of carriers in the heterojunction plays vital role in the photoelectrocatalytic(PEC)process,yet it remains a challenging undertaking.Herein,a MOF-on-MOF based dual S-scheme heterojunction(BiVO_(4)/NH_(2)-MIL-125(Ti)/NH_(2)-MIL-53(Fe),denoted as BVO/NM125/NM53)was rationally designed and prepared for PEC removing and detoxification of organic contaminants(phenol,tetracycline hydrochloride,ciprofloxacin and norfloxacin).The S-scheme heterojunction was double confirmed by DFT calculation and XPS analysis.The charge transfer resistance of BVO/NM125/NM53 photoanode decreases to 1/11 of bare BiVO_(4) photoanode.Meanwhile,the photocurrent densitywas 3 times higher,demonstrating a marked improvement in carrier separation efficiency due to dual S-scheme heterojunction.The photoanode achieved 94.3%removal of phenol within 60 min and maintained stable performance over 10 consecutive cycles,demonstrating good PEC efficiency and structural stability.The BVO/NM125/NM53 photoanode also showed effectiveness in removing antibiotics,with chlorophyll fluorescence imaging confirming a significant reduction in the ecotoxicity of intermediates.For example,wheat seed germination,growth,chlorophyll and Carotenoid production were not affected,which was similar to that of deionized water.Radical trapping experiments and electron paramagnetic resonance(EPR)analysis identified·O_(2)^(-)and·OH as the primary active species.This work demonstrates the effectiveness of developing MOF-on-MOF heterojunctions for visible-light response and enhancing charge separation in PEC.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.