The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused ...The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such as banana slices.To enhance this model,Hyper Tuned Swarm Optimization with Gradient Tree(HT_SOGT)was utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical calculations for material drying.The predictive model considered the influence of seasonal fluctuations,ensuring an efficient drying process with an objective function to optimize the drying time of an average of 7 hrs throughout the year.Across all recorded ambient temperatures(ranging from 16.985○C to 31.4○C),the outlet temperature of the solar dryer is consistently higher,ranging from 39.085○C to 66.2○C.The results show that the optimized dryer design,based on HT_SOGT modelling,significantly improves drying efficiency of the materials across varying conditions,making it suitable for sustainable applications in agriculture and food processing industries in the Bhopal region.展开更多
The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of po...The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.展开更多
To study the effects of fine-aggregates on the drying-shrinkage properties of concrete,two types of manufactured-sand and one type of natural sand(excluding<75μm particles)were selected for tests,and nine sets of ...To study the effects of fine-aggregates on the drying-shrinkage properties of concrete,two types of manufactured-sand and one type of natural sand(excluding<75μm particles)were selected for tests,and nine sets of concrete drying shrinkage tests were designed with three strength grade(C30,C40,and C50)as variables.By observing the drying-shrinkage deformation of the specimens over 360 days,the effects of fine-aggregate properties on the drying shrinkage properties of concrete of different strength grades were analyzed and a prediction model was developed.Compared with natural sand concrete,the development of drying shrinkage of manufactured-sand concrete exhibits the phenomenon of advancement.The apparent density of the fine-aggregate and the strength grade are the two main factors affecting the limit value of the drying shrinkage of concrete.With a reduction in the water absorption or apparent density of the fine-aggregate or the strength grade of concrete prepared using the same fine-aggregate,the prediction accuracy of the existing models decreases.According to the GL 2000 model,two coefficients-and-were introduced to propose a prediction model for the drying shrinkage of fine-aggregate concrete,which is applicable to different strength grades.展开更多
Purpose–Severe scarcity of natural river sand(RS),exacerbated by environmental protection policies and extraction constraints,has significantly impacted aggregate supply for railway concrete.While manufactured sand(M...Purpose–Severe scarcity of natural river sand(RS),exacerbated by environmental protection policies and extraction constraints,has significantly impacted aggregate supply for railway concrete.While manufactured sand(MS)offers a substitute for RS in railway applications,its widespread adoption in high-strength railway prestressed structures is challenged by lack of drying shrinkage and creep research data on concrete.Design/methodology/approach–High-strength manufactured sand concrete(MSC)was prepared using MS with varying lithologies and stone powder contents.Its drying shrinkage and creep behaviors were evaluated in accordance with the Chinese standard GB/T 50082.The deformation mechanism was analyzed by combining nano-scratch testing.Findings–Compared to RS concrete,MSC from all tested lithologies showed higher drying shrinkage but lower creep deformation.The drying shrinkage rose steadily with increased stone powder content,while the creep strain displayed a distinct non-linear trend,decreasing first before rising.To prepare low-deformation MSC,select high-strength MS and limit stone powder content not greater 10%.Nano-scratch tests indicated that harder MS particles suppress microcracking at the interfacial transition zone(ITZ),improving the creep resistance.The predictive models for drying shrinkage and creep were also developed by incorporating coefficients for stone powder and lithology effects.Originality/value–These findings serve as a foundation for the application of MSC in railway prestressed structures,offering both theoretical and practical guidance.展开更多
Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emiss...Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emissions from flooding to drying after organic fertilizer replacing for chemical fertilizer remain unclear.Here,a long-term experiment was conducted with four treatments:chemical fertilization only(control),organic fertilizer substituting 25%of chemical N fertilizer(NM1),50%of chemical N fertilizer(NM2),and NM2combined with crop straw(NMS).GHG emissions were monitored,and soil samples were collected to determine labile SOC fractions and microorganisms.Results revealed the GHG emissions in the NM2 significantly increased by 196.88%from flooding to drying,mainly due to the higher CO_(2) emissions.The GHG emissions per kg of C input in NMS was the lowest with the value of 9.17.From flooding to drying,organic fertilizer application significantly increased the readily oxidizable organic carbon(ROC)contents and C lability;the NM2 and NMS dramatically increased the SOC and non-readily oxidizable organic carbon(NROC).The bacterial communities showed significant differences among different treatments in the flooding,while the significant difference was only found between the NMS and other treatments in the drying.From flooding to drying,changing soil moisture conditions causes C fractions and microbial communities to jointly affect carbon emissions,and the NMS promoted carbon sequestration and mitigated GHG emissions.Our findings highlight the importance of the labile SOC fractions and microorganisms linked to GHG emissions in paddy fields.展开更多
Onsite sanitation offers a sustainable alternative to centralized wastewater treatment;however,effective faecal sludge management is crucial for safe disposal and resource recovery.Among emerging treatment solutions,s...Onsite sanitation offers a sustainable alternative to centralized wastewater treatment;however,effective faecal sludge management is crucial for safe disposal and resource recovery.Among emerging treatment solutions,solar thermal drying holds significant promise to reduce sludge moisture content and enhance handling.Despite this potential,its application remains limited,with important knowledge gaps,particularly concerning the drying kinetics under different environmental and operational conditions.This study aims to fill these gaps by investigating the solar thermal drying behaviour of faecal sludge from ventilated improved pit latrines(VIPs)and urine-diverting dry toilets(UDs),with a specific focus on how air temperature and velocity influence drying performance.A bench-scale solar drying apparatus was used to investigate thin-layer sludge drying kinetics under controlled airflow conditions.The drying experiments were conducted at varying air temperatures(ambient,40℃,and 80℃)and velocities(0,0.5,and 1 m/s),where heated air was supplied via an electric resistance heater.Key drying parameters-including drying rate,critical moisture content,effective moisture diffusivity,and activation energy-were determined.Results showed that drying proceeded through a constant-rate period followed by a falling-rate period,with the critical moisture content ranging from 1.41 to 1.78 g/g db.Higher temperatures and airflow reduced the duration of the constant-rate phase,increased drying rates(0.31–0.99 g/g·min·m^(2)),and enhanced moisture diffusivity(4.56×10^(−9) to 1.52×10^(−8) m^(2)/s).Activation energy decreased with increased airflow,suggesting reduced temperature sensitivity.Thermal efficiency ranged from 14.6%to 35.1%,with solar energy contributing 73%–95% of total input.VIP sludge dried faster than UD sludge,which showed signs of surface crusting that limited moisture transfer.This research offers valuable insights into solar drying design and operation,providing scientific evidence to improve faecal sludge treatment strategies in decentralized sanitation systems.展开更多
The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat sto...The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat storage media) is the main subject of this article. This dryer, which uses stones as storage material and is made of wood and plywood, was used to dry a quantity of 5 kg of fermented cocoa beans. The drying parameters for the drying curves and the drying efficiency of cocoa beans were established and studied. The drying curves were modelled from semi-empirical models. The results showed that the moisture of cocoa beans decreased from 60% to 7% in wet basis. With a solar collector and drying efficiency of 40% and 34%, respectively. And this with a maximum average difference temperature between the drying air and the ambient temperature of 13.25˚C day or night. The best concordances are obtained with R2 values of 0.9983, 0.9843, 0.9813 and 0.9837 respectively from the models of Hii, Jena and Das, Demir et al. and Alibas.展开更多
As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ...As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.展开更多
Drying operations are of grave importance to realize the reduction and utilization of sewage sludge resources,but the conventional thermal evaporation drying(TED)technology presents challenges due to the need for a la...Drying operations are of grave importance to realize the reduction and utilization of sewage sludge resources,but the conventional thermal evaporation drying(TED)technology presents challenges due to the need for a large amount of thermal energy to conquer the phase-change latent heat of moisture.Herein,we report a non-phase change technology based on particle high-speed self-rotation in a cyclone for fast,low-temperature drying of viscous sludge with high-moisture contents.Dispersed phase medium(DPM)is introduced into the cyclone self-rotation drying(CSRD)reactor to enhance the dispersion of the viscous sludge.The effects of carrier gas temperature,feeding rate,size,and proportion of DPM particles in the drying process are systematically examined.Under optimal operating conditions,the weighted content of moisture in the viscous sludge could be reduced from 80%to 15.01%in less than 5 s,achieving a high drying efficiency of 95.79%.Theoretical calculations also reveal that 89.26%of the moisture is removed through non-phase change pathway,contributing to a 522-fold increase in the drying rate of CSRD compared to TED technology.This investigation presents a sustainable effective approach for high moisture viscous sludge treatment with low energy consumption and carbon emissions.展开更多
Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making ...Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making countries, presents a quality problem to the point of suffering a discount on the international market. One of these quality problems is the content of ochratoxin A, a mycotoxin produced by fungi. Finally, to verify the level of contamination in beans produced in Côte d’Ivoire, a study was carried out. It consisted of collecting information on fermentation and drying times (The two major post-harvest operations) and collecting beans, which were analyzed by electrophoresis using the High Performance Liquid Chromatography (HPLC) method. The results obtained show ochratoxin A contents of between 0.05 µg/kg and 0.17 µg/kg. The general level of contamination is therefore very low and below the tolerable limit which is 2 µg/kg. In addition, the correlative study between the fermentation and drying times of the beans revealed no significant influence (p < 0.01) of the duration of these operations on the level of ochratoxin A contamination. Major contamination can occur after post-harvest activities carried out by producers. This is certainly due to the development of fungi responsible for the production of ochratoxin A during the period of storage and marketing of cocoa beans in conditions of high humidity in storage enclosures. Producers need to be made more aware of the need to ensure that cocoa beans are properly dried and stored in dry areas to avoid moisture build-up, which is a source of mould growth and ochratoxin A production.展开更多
The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating(MWH)in two scenarios:intermittently and conti...The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating(MWH)in two scenarios:intermittently and continuously.The mechanical properties and surface appearance of the heated samples were also investigated.Continuous and intermittent microwave drying kinetic experiments were conducted at a frequency of 2.45 GHz using a microwave laboratory oven at 300,500,and 1000 watts.Drying rate curves indicated three distinct phases of MWH.Increasing the microwave power with a shorter drying time led to rapid increases in internal temperature and water evaporation rates of the heated samples.Mechanical results indicated that samples heated under continuous MW(Microwave)power at 300 watts had a modulus of rupture(MOR)and modulus of elasticity(MOE)in three static bending tests higher than 29%and 36%,respectively,than samples heated at 1000 watts.Intermittent microwave heating(IMWH)of samples at 300 and 1000 watts produced the highest MOR and MOE values of 31%and 51%,respectively,unlike those heated under continuous microwave heating(CMWH).External qualitative observation showed that samples heated at high microwave power had severe surface checks.These defects were missing when using IMWH.An analysis of variance(ANOVA)showed that mechanical properties were linked to both microwave power level and the heating scenario,except for MOR in axial compression under CMWH.展开更多
Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and a...Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and are closely related to grain quality.However,it remains unclear about the changes in lipids profling under different AWD regimes.This study set up three irrigation regimes including conventional irrigation(CI),alternate wetting and moderate soil drying irrigation(AWMD),and alternate wetting and severe soil drying irrigation(AWSD).It explored lipidome changes in milled rice of Yangdao 6(YD6)using the untargeted lipidomics approach and analyzed rice cooking and eating quality.The results identifed seven lipid classes,55 lipid subclasses,and 1,086 lipid molecular species.Compared with the CI regime,the AWMD regime mainly altered lipid subclasses consisting of triglyceride(TG),ceramide(Cer),diglyceride(DG),bis-methyl lysophosphatidic acid(BisMePA),phosphocholine(PC),phosphoethanolamine(PE),monogalactosyldiacylglycerol(MGDG),and digalactosyl diglyceride(DGDG)in milled rice and improved cooking and eating quality of rice;in contrast,the AWSD regime distinctly changed lipid subclasses like TG,Cer,DG,PC,PE,hexosylceramide(Hex1Cer),DGDG,and BisMePA and degraded cooking and eating quality of rice.Specifcally,AWMD most signifcantly altered the expressions of lipid molecules,including DGDG(18:0_18:2),DGDG(16:0_14:0),PC(33:1),Cer(t17:0_26:0),and Cer(t17:0_16:0);AWSD most obviously influenced the expressions of TG(6:0_14:0_18:3),PC(41:1),TG(19:1_18:4_18:4),Hex1Cer(d18:2_24:0+O),and Hex1Cer(d18:2_24:1).These 10 altered lipid molecules in milled rice can be preferentially used for investigating their relationships with grain quality in rice.展开更多
The microwave drying of ilmenite was investigated.The effects of power levels and sample mass on drying characteristics of moisture content,drying rate,moisture ratio were studied,with microwave power ranging from 119...The microwave drying of ilmenite was investigated.The effects of power levels and sample mass on drying characteristics of moisture content,drying rate,moisture ratio were studied,with microwave power ranging from 119 W to 700 W and sample mass from 5 g to 25 g.The drying processes were completed within 2-8 min at different conditions.The moisture content and drying rates are found to be dramatically affected by microwave power density.For all drying processes the prior microwave absorption of moisture produces an accelerating peak on the drying rate curves in the initial stage.For the sample mass of 25 g and power of 385 W,the drying kinetics were studied.The experimental results fit better to the Henderson-Pabis index model rather than the Page's semi-empirical model;the drying rate constant k is increased with the increase of microwave power and decrease of sample mass.展开更多
The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model,...The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.展开更多
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
文摘The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such as banana slices.To enhance this model,Hyper Tuned Swarm Optimization with Gradient Tree(HT_SOGT)was utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical calculations for material drying.The predictive model considered the influence of seasonal fluctuations,ensuring an efficient drying process with an objective function to optimize the drying time of an average of 7 hrs throughout the year.Across all recorded ambient temperatures(ranging from 16.985○C to 31.4○C),the outlet temperature of the solar dryer is consistently higher,ranging from 39.085○C to 66.2○C.The results show that the optimized dryer design,based on HT_SOGT modelling,significantly improves drying efficiency of the materials across varying conditions,making it suitable for sustainable applications in agriculture and food processing industries in the Bhopal region.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0101200006)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011926)+1 种基金Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology)(No.2023B1212060003)State Key Laboratory of Applied Microbiology Southern China(No.SKLAM008-2022)。
文摘The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.
基金Funded by the National Natural Science Foundation of China project(Nos.52108219 and U21A20150)the Lanzhou University of Technology Hongliu Outstanding Young Talent Program,China(No.04-062407)the Research on Quality Control Technology of High-performance Concrete Prepared by Manufactured Sand(No.2020Y21)。
文摘To study the effects of fine-aggregates on the drying-shrinkage properties of concrete,two types of manufactured-sand and one type of natural sand(excluding<75μm particles)were selected for tests,and nine sets of concrete drying shrinkage tests were designed with three strength grade(C30,C40,and C50)as variables.By observing the drying-shrinkage deformation of the specimens over 360 days,the effects of fine-aggregate properties on the drying shrinkage properties of concrete of different strength grades were analyzed and a prediction model was developed.Compared with natural sand concrete,the development of drying shrinkage of manufactured-sand concrete exhibits the phenomenon of advancement.The apparent density of the fine-aggregate and the strength grade are the two main factors affecting the limit value of the drying shrinkage of concrete.With a reduction in the water absorption or apparent density of the fine-aggregate or the strength grade of concrete prepared using the same fine-aggregate,the prediction accuracy of the existing models decreases.According to the GL 2000 model,two coefficients-and-were introduced to propose a prediction model for the drying shrinkage of fine-aggregate concrete,which is applicable to different strength grades.
基金supported by National Natural Science Foundation of China(award no.52408309)National Natural Science Foundation of China(award no.52438002).
文摘Purpose–Severe scarcity of natural river sand(RS),exacerbated by environmental protection policies and extraction constraints,has significantly impacted aggregate supply for railway concrete.While manufactured sand(MS)offers a substitute for RS in railway applications,its widespread adoption in high-strength railway prestressed structures is challenged by lack of drying shrinkage and creep research data on concrete.Design/methodology/approach–High-strength manufactured sand concrete(MSC)was prepared using MS with varying lithologies and stone powder contents.Its drying shrinkage and creep behaviors were evaluated in accordance with the Chinese standard GB/T 50082.The deformation mechanism was analyzed by combining nano-scratch testing.Findings–Compared to RS concrete,MSC from all tested lithologies showed higher drying shrinkage but lower creep deformation.The drying shrinkage rose steadily with increased stone powder content,while the creep strain displayed a distinct non-linear trend,decreasing first before rising.To prepare low-deformation MSC,select high-strength MS and limit stone powder content not greater 10%.Nano-scratch tests indicated that harder MS particles suppress microcracking at the interfacial transition zone(ITZ),improving the creep resistance.The predictive models for drying shrinkage and creep were also developed by incorporating coefficients for stone powder and lithology effects.Originality/value–These findings serve as a foundation for the application of MSC in railway prestressed structures,offering both theoretical and practical guidance.
基金the support of the National Natural Science Foundation of China(No.42107247)the National Key Research and Development Project(No.2022YFD1901605)+1 种基金the Natural Science Foundation of Sichuan Province(Nos.2025YFHZ0142 and 2024NSFSC0800)the Tobacco Science Foundation of Sichuan Province(No.SCYC202407)。
文摘Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emissions from flooding to drying after organic fertilizer replacing for chemical fertilizer remain unclear.Here,a long-term experiment was conducted with four treatments:chemical fertilization only(control),organic fertilizer substituting 25%of chemical N fertilizer(NM1),50%of chemical N fertilizer(NM2),and NM2combined with crop straw(NMS).GHG emissions were monitored,and soil samples were collected to determine labile SOC fractions and microorganisms.Results revealed the GHG emissions in the NM2 significantly increased by 196.88%from flooding to drying,mainly due to the higher CO_(2) emissions.The GHG emissions per kg of C input in NMS was the lowest with the value of 9.17.From flooding to drying,organic fertilizer application significantly increased the readily oxidizable organic carbon(ROC)contents and C lability;the NM2 and NMS dramatically increased the SOC and non-readily oxidizable organic carbon(NROC).The bacterial communities showed significant differences among different treatments in the flooding,while the significant difference was only found between the NMS and other treatments in the drying.From flooding to drying,changing soil moisture conditions causes C fractions and microbial communities to jointly affect carbon emissions,and the NMS promoted carbon sequestration and mitigated GHG emissions.Our findings highlight the importance of the labile SOC fractions and microorganisms linked to GHG emissions in paddy fields.
基金funded by the Water Research Commission through the grant K5/2582 and the Gates Foundation through the grant OPP1170678.
文摘Onsite sanitation offers a sustainable alternative to centralized wastewater treatment;however,effective faecal sludge management is crucial for safe disposal and resource recovery.Among emerging treatment solutions,solar thermal drying holds significant promise to reduce sludge moisture content and enhance handling.Despite this potential,its application remains limited,with important knowledge gaps,particularly concerning the drying kinetics under different environmental and operational conditions.This study aims to fill these gaps by investigating the solar thermal drying behaviour of faecal sludge from ventilated improved pit latrines(VIPs)and urine-diverting dry toilets(UDs),with a specific focus on how air temperature and velocity influence drying performance.A bench-scale solar drying apparatus was used to investigate thin-layer sludge drying kinetics under controlled airflow conditions.The drying experiments were conducted at varying air temperatures(ambient,40℃,and 80℃)and velocities(0,0.5,and 1 m/s),where heated air was supplied via an electric resistance heater.Key drying parameters-including drying rate,critical moisture content,effective moisture diffusivity,and activation energy-were determined.Results showed that drying proceeded through a constant-rate period followed by a falling-rate period,with the critical moisture content ranging from 1.41 to 1.78 g/g db.Higher temperatures and airflow reduced the duration of the constant-rate phase,increased drying rates(0.31–0.99 g/g·min·m^(2)),and enhanced moisture diffusivity(4.56×10^(−9) to 1.52×10^(−8) m^(2)/s).Activation energy decreased with increased airflow,suggesting reduced temperature sensitivity.Thermal efficiency ranged from 14.6%to 35.1%,with solar energy contributing 73%–95% of total input.VIP sludge dried faster than UD sludge,which showed signs of surface crusting that limited moisture transfer.This research offers valuable insights into solar drying design and operation,providing scientific evidence to improve faecal sludge treatment strategies in decentralized sanitation systems.
文摘The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat storage media) is the main subject of this article. This dryer, which uses stones as storage material and is made of wood and plywood, was used to dry a quantity of 5 kg of fermented cocoa beans. The drying parameters for the drying curves and the drying efficiency of cocoa beans were established and studied. The drying curves were modelled from semi-empirical models. The results showed that the moisture of cocoa beans decreased from 60% to 7% in wet basis. With a solar collector and drying efficiency of 40% and 34%, respectively. And this with a maximum average difference temperature between the drying air and the ambient temperature of 13.25˚C day or night. The best concordances are obtained with R2 values of 0.9983, 0.9843, 0.9813 and 0.9837 respectively from the models of Hii, Jena and Das, Demir et al. and Alibas.
基金Project(41877240)supported by the National Natural Science Foundation of China。
文摘As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.
基金supported by the National Key Research and Development Program of China(2019YFA0705800)the National Natural Science Foundation of China(52030001)the Science&Technology Commission of Shanghai Municipality(20dz1207600).
文摘Drying operations are of grave importance to realize the reduction and utilization of sewage sludge resources,but the conventional thermal evaporation drying(TED)technology presents challenges due to the need for a large amount of thermal energy to conquer the phase-change latent heat of moisture.Herein,we report a non-phase change technology based on particle high-speed self-rotation in a cyclone for fast,low-temperature drying of viscous sludge with high-moisture contents.Dispersed phase medium(DPM)is introduced into the cyclone self-rotation drying(CSRD)reactor to enhance the dispersion of the viscous sludge.The effects of carrier gas temperature,feeding rate,size,and proportion of DPM particles in the drying process are systematically examined.Under optimal operating conditions,the weighted content of moisture in the viscous sludge could be reduced from 80%to 15.01%in less than 5 s,achieving a high drying efficiency of 95.79%.Theoretical calculations also reveal that 89.26%of the moisture is removed through non-phase change pathway,contributing to a 522-fold increase in the drying rate of CSRD compared to TED technology.This investigation presents a sustainable effective approach for high moisture viscous sludge treatment with low energy consumption and carbon emissions.
文摘Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making countries, presents a quality problem to the point of suffering a discount on the international market. One of these quality problems is the content of ochratoxin A, a mycotoxin produced by fungi. Finally, to verify the level of contamination in beans produced in Côte d’Ivoire, a study was carried out. It consisted of collecting information on fermentation and drying times (The two major post-harvest operations) and collecting beans, which were analyzed by electrophoresis using the High Performance Liquid Chromatography (HPLC) method. The results obtained show ochratoxin A contents of between 0.05 µg/kg and 0.17 µg/kg. The general level of contamination is therefore very low and below the tolerable limit which is 2 µg/kg. In addition, the correlative study between the fermentation and drying times of the beans revealed no significant influence (p < 0.01) of the duration of these operations on the level of ochratoxin A contamination. Major contamination can occur after post-harvest activities carried out by producers. This is certainly due to the development of fungi responsible for the production of ochratoxin A during the period of storage and marketing of cocoa beans in conditions of high humidity in storage enclosures. Producers need to be made more aware of the need to ensure that cocoa beans are properly dried and stored in dry areas to avoid moisture build-up, which is a source of mould growth and ochratoxin A production.
文摘The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating(MWH)in two scenarios:intermittently and continuously.The mechanical properties and surface appearance of the heated samples were also investigated.Continuous and intermittent microwave drying kinetic experiments were conducted at a frequency of 2.45 GHz using a microwave laboratory oven at 300,500,and 1000 watts.Drying rate curves indicated three distinct phases of MWH.Increasing the microwave power with a shorter drying time led to rapid increases in internal temperature and water evaporation rates of the heated samples.Mechanical results indicated that samples heated under continuous MW(Microwave)power at 300 watts had a modulus of rupture(MOR)and modulus of elasticity(MOE)in three static bending tests higher than 29%and 36%,respectively,than samples heated at 1000 watts.Intermittent microwave heating(IMWH)of samples at 300 and 1000 watts produced the highest MOR and MOE values of 31%and 51%,respectively,unlike those heated under continuous microwave heating(CMWH).External qualitative observation showed that samples heated at high microwave power had severe surface checks.These defects were missing when using IMWH.An analysis of variance(ANOVA)showed that mechanical properties were linked to both microwave power level and the heating scenario,except for MOR in axial compression under CMWH.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20241931 and BK20221371)the National Natural Science Foundation of China(32071943 and 32372214)the National Key Research and Development Program of China(2022YFD2300304)。
文摘Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and are closely related to grain quality.However,it remains unclear about the changes in lipids profling under different AWD regimes.This study set up three irrigation regimes including conventional irrigation(CI),alternate wetting and moderate soil drying irrigation(AWMD),and alternate wetting and severe soil drying irrigation(AWSD).It explored lipidome changes in milled rice of Yangdao 6(YD6)using the untargeted lipidomics approach and analyzed rice cooking and eating quality.The results identifed seven lipid classes,55 lipid subclasses,and 1,086 lipid molecular species.Compared with the CI regime,the AWMD regime mainly altered lipid subclasses consisting of triglyceride(TG),ceramide(Cer),diglyceride(DG),bis-methyl lysophosphatidic acid(BisMePA),phosphocholine(PC),phosphoethanolamine(PE),monogalactosyldiacylglycerol(MGDG),and digalactosyl diglyceride(DGDG)in milled rice and improved cooking and eating quality of rice;in contrast,the AWSD regime distinctly changed lipid subclasses like TG,Cer,DG,PC,PE,hexosylceramide(Hex1Cer),DGDG,and BisMePA and degraded cooking and eating quality of rice.Specifcally,AWMD most signifcantly altered the expressions of lipid molecules,including DGDG(18:0_18:2),DGDG(16:0_14:0),PC(33:1),Cer(t17:0_26:0),and Cer(t17:0_16:0);AWSD most obviously influenced the expressions of TG(6:0_14:0_18:3),PC(41:1),TG(19:1_18:4_18:4),Hex1Cer(d18:2_24:0+O),and Hex1Cer(d18:2_24:1).These 10 altered lipid molecules in milled rice can be preferentially used for investigating their relationships with grain quality in rice.
基金Project(2007CB613606)supported by the National Basic Research Program of ChinaProject(50734007)supported by the National Natural Science Foundation of China
文摘The microwave drying of ilmenite was investigated.The effects of power levels and sample mass on drying characteristics of moisture content,drying rate,moisture ratio were studied,with microwave power ranging from 119 W to 700 W and sample mass from 5 g to 25 g.The drying processes were completed within 2-8 min at different conditions.The moisture content and drying rates are found to be dramatically affected by microwave power density.For all drying processes the prior microwave absorption of moisture produces an accelerating peak on the drying rate curves in the initial stage.For the sample mass of 25 g and power of 385 W,the drying kinetics were studied.The experimental results fit better to the Henderson-Pabis index model rather than the Page's semi-empirical model;the drying rate constant k is increased with the increase of microwave power and decrease of sample mass.
基金This study was supported by the Key Program of Ministry of Education of China (01066)
文摘The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process