In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortabl...In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.展开更多
The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused ...The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such as banana slices.To enhance this model,Hyper Tuned Swarm Optimization with Gradient Tree(HT_SOGT)was utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical calculations for material drying.The predictive model considered the influence of seasonal fluctuations,ensuring an efficient drying process with an objective function to optimize the drying time of an average of 7 hrs throughout the year.Across all recorded ambient temperatures(ranging from 16.985○C to 31.4○C),the outlet temperature of the solar dryer is consistently higher,ranging from 39.085○C to 66.2○C.The results show that the optimized dryer design,based on HT_SOGT modelling,significantly improves drying efficiency of the materials across varying conditions,making it suitable for sustainable applications in agriculture and food processing industries in the Bhopal region.展开更多
This review paper presents an in-depth investigation of the modeling techniques used to study conveyor belt dryers.These techniques are classified into four categories:theoretical modeling,computational fluid dynamics...This review paper presents an in-depth investigation of the modeling techniques used to study conveyor belt dryers.These techniques are classified into four categories:theoretical modeling,computational fluid dynamics(CFD),empirical,and performance under different control strategies.Within the theoretical and CFD categories,the models are further classified as transient and steady state,as well as one-dimensional,two-dimensional,and three-dimensional.The empirical approach involves conducting experimental studies to collect moisture ratio data during the drying process and comparing it with empirical models.The methods of control are divided into classical and advanced controllers,with classical controllers including proportional-integral(PI),proportional-integral-derivative(PID),and quantitative feedback theory(QFT)controllers.Advanced controllers consist of artificial intelligence-based controllers,such as artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),nonlinear autoregressive exogenous(NARX)models,model predictive control(MPC),and soft sensors.This review elucidated the methodologies and software employed for each modeling technique,as well as their prospective utility in industrial contexts.The utilization of theoretical and CFD methodologies is advantageous in forecasting the dynamics of complex systems.Conversely,empirical techniques serve the purpose of validating theoretical models and procuring data to facilitate model refinement.Controllers play a crucial role in the optimization of the drying process and the attainment of desired outputs.展开更多
This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues o...This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility.展开更多
The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat sto...The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat storage media) is the main subject of this article. This dryer, which uses stones as storage material and is made of wood and plywood, was used to dry a quantity of 5 kg of fermented cocoa beans. The drying parameters for the drying curves and the drying efficiency of cocoa beans were established and studied. The drying curves were modelled from semi-empirical models. The results showed that the moisture of cocoa beans decreased from 60% to 7% in wet basis. With a solar collector and drying efficiency of 40% and 34%, respectively. And this with a maximum average difference temperature between the drying air and the ambient temperature of 13.25˚C day or night. The best concordances are obtained with R2 values of 0.9983, 0.9843, 0.9813 and 0.9837 respectively from the models of Hii, Jena and Das, Demir et al. and Alibas.展开更多
The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of po...The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.展开更多
China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict ...China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict the evaluation efficiency and exploration process of dry hot rocks.This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad.By integrating the main controlling factors of hot dry rock formation,and using index grading and quantification,the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks.The evaluation system is based on four indicators:heat source,thermal channel,thermal reservoir and cap rock.It includes 11 evaluation parameters,including time of magmatic/volcanic activity,depth of molten mass or magma chamber,distribution of discordogenic faults,burial depth of thermal reservoir,cap rock type and thickness,surface thermal anomaly,heat flow,geothermal gradient,Moho depth,Curie depth,Earthquake magnitude and focal depth.Each parameter is divided into 3 levels.Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km^(2),while Class II favorable zones span about 5.7×10^(4) km^(2).The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin,along with Reshuitang Town in Keshiketeng Banner,Reshui Town in Ningcheng County,and Reshuitang Town in Aohan Banner of Chifeng City,are identified as Class I favorable zones for hot dry rock resources.These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources,shallow thermal reservoir depths,and overlying thick sedimentary rock layers acting as caprock.The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.展开更多
Dry eye disease(DED)is a multifactorial disorder that disturbs ocular surface equilibrium,considerably diminishing quality of life.Present therapies only offer symptomatic alleviation.Stem cell treatment,especially me...Dry eye disease(DED)is a multifactorial disorder that disturbs ocular surface equilibrium,considerably diminishing quality of life.Present therapies only offer symptomatic alleviation.Stem cell treatment,especially mesenchymal stem cells(MSCs),has surfaced as a viable approach for tissue regeneration and immunological regulation in DED.Preclinical and early clinical investigations indicate that MSCs can improve lacrimal gland functionality,diminish inflammation,and facilitate corneal regeneration.Nonetheless,obstacles persist in enhancing MSC viability,determining the optimal MSC source,and guaranteeing sustained therapeutic effectiveness.Additional extensive randomized clinical trials are required to confirm the efficacy of MSC-based therapies for severe DED.展开更多
The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conduct...The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.展开更多
The overall heat transfer coefficient(OHTC)of rock fractures is a fundamental parameter for characterizing the heat transfer behavior of rock fractures in hot dry rock(HDR)geothermal mining.Although a number of practi...The overall heat transfer coefficient(OHTC)of rock fractures is a fundamental parameter for characterizing the heat transfer behavior of rock fractures in hot dry rock(HDR)geothermal mining.Although a number of practical formulae for heat transfer coefficients have been developed in the literature,there is still no widely accepted analytical solution.This paper constructs highly accurate analytical solutions for the temperatures of the inner fracture wall and the fluid.Then they are employed to develop new definition-based formulae(formula A and its simplification formula B)of the OHTC,which are well validated by the experimental and numerical simulation results.An empirical correlation formula of heat transfer coefficient is proposed based on the definition-based formulae which can be directly used in the numerical simulations of heat transfer in rock fractures.A site-scale application example of numerical simulation also demonstrates the effectiveness of the empirical correlation formula.展开更多
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while bala...Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality.展开更多
Objective:To investigate the anti-inflammatory,antioxidant,and goblet cell-stimulating effects of a suspension of Ophiopogon japonicus(L.f.)Ker Gawl.(O.japonicus,Mai Dong)extract combined with hyaluronic acid(HA)in th...Objective:To investigate the anti-inflammatory,antioxidant,and goblet cell-stimulating effects of a suspension of Ophiopogon japonicus(L.f.)Ker Gawl.(O.japonicus,Mai Dong)extract combined with hyaluronic acid(HA)in the mouse model with dry eye disease(DED).Methods:A DED mouse model was induced using benzalkonium chloride(BAK),followed by treatment with O.japonicus extract-containing eye drops at varying concentrations.Experimental groups included a normal control,a DED model control,a positive control,and an O.japonicus extract-treated group.Corneal fluorescein staining and tear break-up time(TBUT)were used to assess tear film stability and ocular surface integrity.Enzyme-linked immunosorbent assay(ELISA)measured inflammatory factor levels in corneal and conjunctival tissues,whereas Western blot(WB)analyzed key antioxidant and inflammatory markers,including nuclear factor erythroid 2-related factor(2Nrf2)and heme oxygenase 1(HO-1).Periodic acid-schiff(PAS)staining and immunofluorescence were used to evaluate goblet cell density and mucin secretion.Results:O.japonicus extract significantly improved corneal damage,reduced fluorescein staining scores,prolonged TBUT,and increased tear secretion.It downregulated inflammatory markers,including interleukin-8(IL-8),interleukin-1β(IL-1β),and interferon-g(IFN-γ)while upregulating Nrf2,HO-1,and the interleukin-13(IL-13)/IFN-γ ratio,alleviating oxidative stress and inflammation.PAS staining showed increased conjunctival goblet cell density and restored mucin secretion,enhancing tear film stability.Conclusion:O.japonicus extract demonstrated significant anti-inflammatory,antioxidant,and goblet cell-stimulating effects in a DED model,with good biocompatibility and promising therapeutic potential.Future research should optimize extraction processes and validate their efficacy and safety in clinical settings.展开更多
It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.He...It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.Here,we propose to boost the coke-tolerance of Co catalyst by applying a contact potential introduced by immiscible Ag clusters.We demonstrate that Co clusters separated by neighboring Ag on Yttria-stabilized zirconia(YSZ)support can serve as a coke-and sintering-resistant DRM catalyst under diluent gas-free,stoichiometric CH_(4) and CO_(2) feeding,1123 K and 20 bar.Since immiscible metals are ubiquitous and metal contact influences surface work function in general,this new design concept may have general implications for tailoring catalytic properties of metals.展开更多
Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making ...Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making countries, presents a quality problem to the point of suffering a discount on the international market. One of these quality problems is the content of ochratoxin A, a mycotoxin produced by fungi. Finally, to verify the level of contamination in beans produced in Côte d’Ivoire, a study was carried out. It consisted of collecting information on fermentation and drying times (The two major post-harvest operations) and collecting beans, which were analyzed by electrophoresis using the High Performance Liquid Chromatography (HPLC) method. The results obtained show ochratoxin A contents of between 0.05 µg/kg and 0.17 µg/kg. The general level of contamination is therefore very low and below the tolerable limit which is 2 µg/kg. In addition, the correlative study between the fermentation and drying times of the beans revealed no significant influence (p < 0.01) of the duration of these operations on the level of ochratoxin A contamination. Major contamination can occur after post-harvest activities carried out by producers. This is certainly due to the development of fungi responsible for the production of ochratoxin A during the period of storage and marketing of cocoa beans in conditions of high humidity in storage enclosures. Producers need to be made more aware of the need to ensure that cocoa beans are properly dried and stored in dry areas to avoid moisture build-up, which is a source of mould growth and ochratoxin A production.展开更多
Poyang Lake,China's largest freshwater lake,is a critical wintering ground for most of the global Siberian Grane(Grus leucogeranus)population.However,increasingly prolonged dry seasons have degraded the natural we...Poyang Lake,China's largest freshwater lake,is a critical wintering ground for most of the global Siberian Grane(Grus leucogeranus)population.However,increasingly prolonged dry seasons have degraded the natural wetlands of Poyang Lake,forcing Siberian Cranes to shift to artificial habitats.From 2015 to 2023,field surveys revealed a substantial increase in the number of Siberian Cranes in artificial habitats,with peak counts reaching 3000individuals,accounting for up to 53%of the species'global population.Satellite telemetry of 13 individuals further confirmed the spatial use of these habitats,highlighting their consistent reliance on artificial sites over multiple years.Seven high-use hotspots were identified outside of Poyang Lake,including two artificial provisioning sites that supported dense foraging flocks for extended periods.Satellite telemetry confirmed this trend,with artificial habitats making up to 64.2%of the occurrence sites in some years.This reliance on artificial habitats was closely linked to the reduced tuber biomass in natural wetlands and low winter water levels in Poyang Lake,which collectively explained 83%of the variance in crane abundance in artificial habitats.Artificial habitat use peaked in December and January,indicating marked seasonal variation.Siberian Cranes also exhibited a pronounced circadian rhythm,foraging in artificial habitats during the day and returning to natural wetlands to roost at night.Despite the shift toward artificial habitats,natural wetlands remain critical for nighttime refuge.The continued dependence on artificial habitats raises concerns about disease transmission owing to dense congregations.Conservation strategies should prioritize both the careful management of artificial provisioning sites and the restoration of natural wetlands to improve food and habitat availability within natural ecosystems,ultimately enabling the return of Siberian Cranes to their traditional natural habitats.展开更多
AIM:To provide a comprehensive review of the advances in research on diabetes-associated dry eye(DADE),highlighting its pathophysiological mechanisms,risk factors,and demographic characteristics,laying the foundation ...AIM:To provide a comprehensive review of the advances in research on diabetes-associated dry eye(DADE),highlighting its pathophysiological mechanisms,risk factors,and demographic characteristics,laying the foundation for further investigation into its pathogenesis and treatment strategies.METHODS:A systemic review of the documents related to DADE had been performed based on the Web of Science database prior to achieving the plain text files of authors,titles,journals,and abstracts which afterwards had been imported into Citespace and VOSviewer software for data cleansing.The visual analysis was implemented from the following aspects:journals’publications,author and national cooperation,keyword co-occurrence,timeline analysis,and burst detection.RESULTS:The 318 documents in 167 journals had been incorporated with the overall annual citations and annual publications respectively growing significantly since 2014 and 2016.The keyword co-occurrence networks formed 4 clusters,with the representative keywords being dry eye,diabetes mellitus,prevalence,and diabetic retinopathy.Both the timeline map and the burst detection demonstrated that in the exploration of the pathogenesis of DADE,initial research was dedicated to Sjögren’s syndrome,followed by cross-sectional statistical analysis of the pertinent contributing factors of DADE using online databases.Precisely the oxidative stress seemed to surge into the research spotlight presently.The key pathogenic mechanisms of DADE include inflammation,oxidative stress and corneal neuropathy,contributing to the development of dry eye symptoms.CONCLUSION:Age,gender,diabetes duration,and diabetic retinopathy are strongly associated with the development of DADE,but the impact of other systemic factors require further investigation.With high prevalence of dry eye in Asia,valuable resources like the Korea National Health and Nutrition Examination Survey(KNHANES)database offer crucial data for developing risk prediction models for DADE.Building risk prediction models using machine learning algorithms is a promising future research direction,enabling physicians to identify high-risk individuals and implement early interventions.展开更多
Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina ...Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina support in Ni-based catalysts to improve their DRM performance.The addition of iron as a promotor was found to add reducible iron species along with reducible NiO species,enhance the basicity and induce the deposition of oxidizable carbon.By incorporating 1 wt.%Fe into a 5Ni/10ZrAl catalyst,a higher CO_(2) interaction and formation of reducible"NiO-species having strong interaction with support"was observed,which led to an∼80%H_(2) yield in 420 min of Time on Stream(TOS).Further increasing the Fe content to 2 wt.%led to the formation of additional reducible iron oxide species and a noticeable rise in H_(2) yield up to 84%.Despite the severe weight loss on Fe-promoted catalysts,high H_(2) yield was maintained due to the proper balance between the rate of CH_(4) decomposition and the rate of carbon deposit diffusion.Finally,incorporating 3 wt.%Fe into the 5Ni/10ZrAl catalyst resulted in the highest CO_(2) interaction,wide presence of reducible NiO-species,minimumgraphitic deposit and an 87%H_(2) yield.Our findings suggest that ironpromoted zirconia-alumina-supported Ni catalysts can be a cheap and excellent catalytic system for H_(2) production via DRM.展开更多
Phytoplankton plays a crucial role in the energy flow and nutrient cycling of aquatic ecosystems.To understand the spatial and temporal distribution of phytoplankton in the Wujiang River,Yungui Plateau,SW China,sample...Phytoplankton plays a crucial role in the energy flow and nutrient cycling of aquatic ecosystems.To understand the spatial and temporal distribution of phytoplankton in the Wujiang River,Yungui Plateau,SW China,samples were collected in 12 locations in wet and dry seasons and analyzed.We hypothesized that phytoplankton assemblages would exhibit significant temporal variability,with niche breadths of dominant species fluctuating seasonally,leading to distinct patterns of species association and community stability.Results show differences in community structure between the two seasons,but such changes did not cause non-significant differences inα-diversity.Diatoms were dominant in the assemblages in terms of biomass,while the numerical abundance of Cyanobacteria was highest in the wet season due to their relatively small cells.Rainfall-driven changes in runoff significantly altered nutrient availability,which in turn strongly affected phytoplankton structure.The more intense water flow contributed to a greaterβ-diversity in the wet season,driven primarily by species replacement,with stochastic processes played a more important role during the dry season.In the dry season,dominant species exhibited a broader niche breadth and greater niche overlap,along with more positive species associations,suggesting a more stable and resilient community structure.Conversely,in the wet season,species had narrower niche breadth and less niche overlap,leading to a less stable community.Both negative and positive species associations were observed,indicating a complex balance between environmental filtering and competition within the assemblages.These findings provide important insights into how seasonal environmental changes,particularly water flow and nutrient dynamics,shape phytoplankton communities in aquatic ecosystems.Understanding the mechanisms driving changes in community and stability is critical for predicting the impacts of climate change and managing aquatic biodiversity,as fluctuations in water flow and nutrient input may alter ecosystem functioning and productivity.展开更多
Objective:To evaluate the effectiveness of digital-intelligent health education for patients undergoing maintenance hemodialysis.Methods:From December 2023 to December 2024,82 patients undergoing maintenance hemodialy...Objective:To evaluate the effectiveness of digital-intelligent health education for patients undergoing maintenance hemodialysis.Methods:From December 2023 to December 2024,82 patients undergoing maintenance hemodialysis in our hospital were selected and randomly divided into an observation group(n=41,receiving routine health education)and a control group(n=41,receiving digital health education).The levels of knowledge,belief,and behavior related to dry weight control,as well as changes in dry weight and complications,were compared before and after intervention.Results:After intervention,the observation group had higher scores for knowledge(40.96±6.43),belief(39.11±6.39),behavior(39.66±5.78),and total score(119.04±13.11)compared to the control group(p<0.05).The observation group also showed better dry weight control than the control group(p<0.05).The total incidence of complications in the observation group(4.88%,2/41)was lower than that in the control group(21.95%,9/41)(p<0.05).Conclusion:The rational application of digital-intelligent health education can effectively maintain dry weight in patients undergoing maintenance hemodialysis,reduce complications,and improve patients’knowledge,belief,and behavior levels.This approach is worthy of promotion.展开更多
文摘In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.
文摘The design and development of solar dryers are crucial in regions with abundant solar energy,such as Bhopal,India,where seasonal variations significantly impact the efficiency of drying processes.The paper is focused on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such as banana slices.To enhance this model,Hyper Tuned Swarm Optimization with Gradient Tree(HT_SOGT)was utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical calculations for material drying.The predictive model considered the influence of seasonal fluctuations,ensuring an efficient drying process with an objective function to optimize the drying time of an average of 7 hrs throughout the year.Across all recorded ambient temperatures(ranging from 16.985○C to 31.4○C),the outlet temperature of the solar dryer is consistently higher,ranging from 39.085○C to 66.2○C.The results show that the optimized dryer design,based on HT_SOGT modelling,significantly improves drying efficiency of the materials across varying conditions,making it suitable for sustainable applications in agriculture and food processing industries in the Bhopal region.
基金supported by the AmericanUniversity in Cairo,Egypt.
文摘This review paper presents an in-depth investigation of the modeling techniques used to study conveyor belt dryers.These techniques are classified into four categories:theoretical modeling,computational fluid dynamics(CFD),empirical,and performance under different control strategies.Within the theoretical and CFD categories,the models are further classified as transient and steady state,as well as one-dimensional,two-dimensional,and three-dimensional.The empirical approach involves conducting experimental studies to collect moisture ratio data during the drying process and comparing it with empirical models.The methods of control are divided into classical and advanced controllers,with classical controllers including proportional-integral(PI),proportional-integral-derivative(PID),and quantitative feedback theory(QFT)controllers.Advanced controllers consist of artificial intelligence-based controllers,such as artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),nonlinear autoregressive exogenous(NARX)models,model predictive control(MPC),and soft sensors.This review elucidated the methodologies and software employed for each modeling technique,as well as their prospective utility in industrial contexts.The utilization of theoretical and CFD methodologies is advantageous in forecasting the dynamics of complex systems.Conversely,empirical techniques serve the purpose of validating theoretical models and procuring data to facilitate model refinement.Controllers play a crucial role in the optimization of the drying process and the attainment of desired outputs.
基金supported by the Ignite National Technology fund,under National Grassroots Initiatives Program of ICT R&D(NIGRI),Project ID.NGIRI-2024-23901 of 2024.
文摘This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility.
文摘The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat storage media) is the main subject of this article. This dryer, which uses stones as storage material and is made of wood and plywood, was used to dry a quantity of 5 kg of fermented cocoa beans. The drying parameters for the drying curves and the drying efficiency of cocoa beans were established and studied. The drying curves were modelled from semi-empirical models. The results showed that the moisture of cocoa beans decreased from 60% to 7% in wet basis. With a solar collector and drying efficiency of 40% and 34%, respectively. And this with a maximum average difference temperature between the drying air and the ambient temperature of 13.25˚C day or night. The best concordances are obtained with R2 values of 0.9983, 0.9843, 0.9813 and 0.9837 respectively from the models of Hii, Jena and Das, Demir et al. and Alibas.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0101200006)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011926)+1 种基金Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology)(No.2023B1212060003)State Key Laboratory of Applied Microbiology Southern China(No.SKLAM008-2022)。
文摘The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.
基金Supported by PetroChina Prospective and Basic Technological Project(2022DJ5503).
文摘China has abundant resources of hot dry rocks.However,due to the fact that the evaluation methods for favorable areas are mainly qualitative,and the evaluation indicators and standards are inconsistent,which restrict the evaluation efficiency and exploration process of dry hot rocks.This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad.By integrating the main controlling factors of hot dry rock formation,and using index grading and quantification,the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks.The evaluation system is based on four indicators:heat source,thermal channel,thermal reservoir and cap rock.It includes 11 evaluation parameters,including time of magmatic/volcanic activity,depth of molten mass or magma chamber,distribution of discordogenic faults,burial depth of thermal reservoir,cap rock type and thickness,surface thermal anomaly,heat flow,geothermal gradient,Moho depth,Curie depth,Earthquake magnitude and focal depth.Each parameter is divided into 3 levels.Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km^(2),while Class II favorable zones span about 5.7×10^(4) km^(2).The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin,along with Reshuitang Town in Keshiketeng Banner,Reshui Town in Ningcheng County,and Reshuitang Town in Aohan Banner of Chifeng City,are identified as Class I favorable zones for hot dry rock resources.These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources,shallow thermal reservoir depths,and overlying thick sedimentary rock layers acting as caprock.The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.
文摘Dry eye disease(DED)is a multifactorial disorder that disturbs ocular surface equilibrium,considerably diminishing quality of life.Present therapies only offer symptomatic alleviation.Stem cell treatment,especially mesenchymal stem cells(MSCs),has surfaced as a viable approach for tissue regeneration and immunological regulation in DED.Preclinical and early clinical investigations indicate that MSCs can improve lacrimal gland functionality,diminish inflammation,and facilitate corneal regeneration.Nonetheless,obstacles persist in enhancing MSC viability,determining the optimal MSC source,and guaranteeing sustained therapeutic effectiveness.Additional extensive randomized clinical trials are required to confirm the efficacy of MSC-based therapies for severe DED.
基金We gratefully acknowledge the financial support from the Key Laboratory of Geological Safety of Coastal Urban Underground Space,Ministry of Natural Resources(BHKF2022Y03)Shandong Provincial Colleges and Universities Youth Innovation Technology Support Program,Education Department of Shandong Province(grant number 2023KJ092).
文摘The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.
基金support of this work by the National Natural Science Foundation of China (Grant Nos.41972316 and 41672252).
文摘The overall heat transfer coefficient(OHTC)of rock fractures is a fundamental parameter for characterizing the heat transfer behavior of rock fractures in hot dry rock(HDR)geothermal mining.Although a number of practical formulae for heat transfer coefficients have been developed in the literature,there is still no widely accepted analytical solution.This paper constructs highly accurate analytical solutions for the temperatures of the inner fracture wall and the fluid.Then they are employed to develop new definition-based formulae(formula A and its simplification formula B)of the OHTC,which are well validated by the experimental and numerical simulation results.An empirical correlation formula of heat transfer coefficient is proposed based on the definition-based formulae which can be directly used in the numerical simulations of heat transfer in rock fractures.A site-scale application example of numerical simulation also demonstrates the effectiveness of the empirical correlation formula.
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
基金he National Key Research and Development Program of China(2022YFD2300304)the National Natural Science Foundation of China(31671617)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality.
基金the National Natural Science Foundation of China(82070928 and 82171026).
文摘Objective:To investigate the anti-inflammatory,antioxidant,and goblet cell-stimulating effects of a suspension of Ophiopogon japonicus(L.f.)Ker Gawl.(O.japonicus,Mai Dong)extract combined with hyaluronic acid(HA)in the mouse model with dry eye disease(DED).Methods:A DED mouse model was induced using benzalkonium chloride(BAK),followed by treatment with O.japonicus extract-containing eye drops at varying concentrations.Experimental groups included a normal control,a DED model control,a positive control,and an O.japonicus extract-treated group.Corneal fluorescein staining and tear break-up time(TBUT)were used to assess tear film stability and ocular surface integrity.Enzyme-linked immunosorbent assay(ELISA)measured inflammatory factor levels in corneal and conjunctival tissues,whereas Western blot(WB)analyzed key antioxidant and inflammatory markers,including nuclear factor erythroid 2-related factor(2Nrf2)and heme oxygenase 1(HO-1).Periodic acid-schiff(PAS)staining and immunofluorescence were used to evaluate goblet cell density and mucin secretion.Results:O.japonicus extract significantly improved corneal damage,reduced fluorescein staining scores,prolonged TBUT,and increased tear secretion.It downregulated inflammatory markers,including interleukin-8(IL-8),interleukin-1β(IL-1β),and interferon-g(IFN-γ)while upregulating Nrf2,HO-1,and the interleukin-13(IL-13)/IFN-γ ratio,alleviating oxidative stress and inflammation.PAS staining showed increased conjunctival goblet cell density and restored mucin secretion,enhancing tear film stability.Conclusion:O.japonicus extract demonstrated significant anti-inflammatory,antioxidant,and goblet cell-stimulating effects in a DED model,with good biocompatibility and promising therapeutic potential.Future research should optimize extraction processes and validate their efficacy and safety in clinical settings.
文摘It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.Here,we propose to boost the coke-tolerance of Co catalyst by applying a contact potential introduced by immiscible Ag clusters.We demonstrate that Co clusters separated by neighboring Ag on Yttria-stabilized zirconia(YSZ)support can serve as a coke-and sintering-resistant DRM catalyst under diluent gas-free,stoichiometric CH_(4) and CO_(2) feeding,1123 K and 20 bar.Since immiscible metals are ubiquitous and metal contact influences surface work function in general,this new design concept may have general implications for tailoring catalytic properties of metals.
文摘Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making countries, presents a quality problem to the point of suffering a discount on the international market. One of these quality problems is the content of ochratoxin A, a mycotoxin produced by fungi. Finally, to verify the level of contamination in beans produced in Côte d’Ivoire, a study was carried out. It consisted of collecting information on fermentation and drying times (The two major post-harvest operations) and collecting beans, which were analyzed by electrophoresis using the High Performance Liquid Chromatography (HPLC) method. The results obtained show ochratoxin A contents of between 0.05 µg/kg and 0.17 µg/kg. The general level of contamination is therefore very low and below the tolerable limit which is 2 µg/kg. In addition, the correlative study between the fermentation and drying times of the beans revealed no significant influence (p < 0.01) of the duration of these operations on the level of ochratoxin A contamination. Major contamination can occur after post-harvest activities carried out by producers. This is certainly due to the development of fungi responsible for the production of ochratoxin A during the period of storage and marketing of cocoa beans in conditions of high humidity in storage enclosures. Producers need to be made more aware of the need to ensure that cocoa beans are properly dried and stored in dry areas to avoid moisture build-up, which is a source of mould growth and ochratoxin A production.
基金supported by the National Natural Science Foundation of China(No.32260275)Fundamental Research Funds of CAF(CAFYBB2024ZA033)。
文摘Poyang Lake,China's largest freshwater lake,is a critical wintering ground for most of the global Siberian Grane(Grus leucogeranus)population.However,increasingly prolonged dry seasons have degraded the natural wetlands of Poyang Lake,forcing Siberian Cranes to shift to artificial habitats.From 2015 to 2023,field surveys revealed a substantial increase in the number of Siberian Cranes in artificial habitats,with peak counts reaching 3000individuals,accounting for up to 53%of the species'global population.Satellite telemetry of 13 individuals further confirmed the spatial use of these habitats,highlighting their consistent reliance on artificial sites over multiple years.Seven high-use hotspots were identified outside of Poyang Lake,including two artificial provisioning sites that supported dense foraging flocks for extended periods.Satellite telemetry confirmed this trend,with artificial habitats making up to 64.2%of the occurrence sites in some years.This reliance on artificial habitats was closely linked to the reduced tuber biomass in natural wetlands and low winter water levels in Poyang Lake,which collectively explained 83%of the variance in crane abundance in artificial habitats.Artificial habitat use peaked in December and January,indicating marked seasonal variation.Siberian Cranes also exhibited a pronounced circadian rhythm,foraging in artificial habitats during the day and returning to natural wetlands to roost at night.Despite the shift toward artificial habitats,natural wetlands remain critical for nighttime refuge.The continued dependence on artificial habitats raises concerns about disease transmission owing to dense congregations.Conservation strategies should prioritize both the careful management of artificial provisioning sites and the restoration of natural wetlands to improve food and habitat availability within natural ecosystems,ultimately enabling the return of Siberian Cranes to their traditional natural habitats.
基金Supported by the Exploratory Project of The Second Affiliated Hospital of Xi’an Jiaotong University[No.2020YJ(ZYTS)154].
文摘AIM:To provide a comprehensive review of the advances in research on diabetes-associated dry eye(DADE),highlighting its pathophysiological mechanisms,risk factors,and demographic characteristics,laying the foundation for further investigation into its pathogenesis and treatment strategies.METHODS:A systemic review of the documents related to DADE had been performed based on the Web of Science database prior to achieving the plain text files of authors,titles,journals,and abstracts which afterwards had been imported into Citespace and VOSviewer software for data cleansing.The visual analysis was implemented from the following aspects:journals’publications,author and national cooperation,keyword co-occurrence,timeline analysis,and burst detection.RESULTS:The 318 documents in 167 journals had been incorporated with the overall annual citations and annual publications respectively growing significantly since 2014 and 2016.The keyword co-occurrence networks formed 4 clusters,with the representative keywords being dry eye,diabetes mellitus,prevalence,and diabetic retinopathy.Both the timeline map and the burst detection demonstrated that in the exploration of the pathogenesis of DADE,initial research was dedicated to Sjögren’s syndrome,followed by cross-sectional statistical analysis of the pertinent contributing factors of DADE using online databases.Precisely the oxidative stress seemed to surge into the research spotlight presently.The key pathogenic mechanisms of DADE include inflammation,oxidative stress and corneal neuropathy,contributing to the development of dry eye symptoms.CONCLUSION:Age,gender,diabetes duration,and diabetic retinopathy are strongly associated with the development of DADE,but the impact of other systemic factors require further investigation.With high prevalence of dry eye in Asia,valuable resources like the Korea National Health and Nutrition Examination Survey(KNHANES)database offer crucial data for developing risk prediction models for DADE.Building risk prediction models using machine learning algorithms is a promising future research direction,enabling physicians to identify high-risk individuals and implement early interventions.
基金The authors would like to extend their sincere appreciation to Researchers Supporting Project number (RSP2023R368)King Saud University,Riyadh,Saudi Arabia.RK,NP,VKS acknowledge Indus University,Ahmedabad,for supporting research.Dr.Ahmed I.Osman and Prof.David W.Rooney wish to acknowledge the support of The Bryden Centre project (Project ID VA5048)。
文摘Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina support in Ni-based catalysts to improve their DRM performance.The addition of iron as a promotor was found to add reducible iron species along with reducible NiO species,enhance the basicity and induce the deposition of oxidizable carbon.By incorporating 1 wt.%Fe into a 5Ni/10ZrAl catalyst,a higher CO_(2) interaction and formation of reducible"NiO-species having strong interaction with support"was observed,which led to an∼80%H_(2) yield in 420 min of Time on Stream(TOS).Further increasing the Fe content to 2 wt.%led to the formation of additional reducible iron oxide species and a noticeable rise in H_(2) yield up to 84%.Despite the severe weight loss on Fe-promoted catalysts,high H_(2) yield was maintained due to the proper balance between the rate of CH_(4) decomposition and the rate of carbon deposit diffusion.Finally,incorporating 3 wt.%Fe into the 5Ni/10ZrAl catalyst resulted in the highest CO_(2) interaction,wide presence of reducible NiO-species,minimumgraphitic deposit and an 87%H_(2) yield.Our findings suggest that ironpromoted zirconia-alumina-supported Ni catalysts can be a cheap and excellent catalytic system for H_(2) production via DRM.
基金Supported by the National Natural Science Foundation of China(No.32060270)the Project for Innovation and Entrepreneurship of High level Overseas Talents in Guizhou(No.(2020)09)。
文摘Phytoplankton plays a crucial role in the energy flow and nutrient cycling of aquatic ecosystems.To understand the spatial and temporal distribution of phytoplankton in the Wujiang River,Yungui Plateau,SW China,samples were collected in 12 locations in wet and dry seasons and analyzed.We hypothesized that phytoplankton assemblages would exhibit significant temporal variability,with niche breadths of dominant species fluctuating seasonally,leading to distinct patterns of species association and community stability.Results show differences in community structure between the two seasons,but such changes did not cause non-significant differences inα-diversity.Diatoms were dominant in the assemblages in terms of biomass,while the numerical abundance of Cyanobacteria was highest in the wet season due to their relatively small cells.Rainfall-driven changes in runoff significantly altered nutrient availability,which in turn strongly affected phytoplankton structure.The more intense water flow contributed to a greaterβ-diversity in the wet season,driven primarily by species replacement,with stochastic processes played a more important role during the dry season.In the dry season,dominant species exhibited a broader niche breadth and greater niche overlap,along with more positive species associations,suggesting a more stable and resilient community structure.Conversely,in the wet season,species had narrower niche breadth and less niche overlap,leading to a less stable community.Both negative and positive species associations were observed,indicating a complex balance between environmental filtering and competition within the assemblages.These findings provide important insights into how seasonal environmental changes,particularly water flow and nutrient dynamics,shape phytoplankton communities in aquatic ecosystems.Understanding the mechanisms driving changes in community and stability is critical for predicting the impacts of climate change and managing aquatic biodiversity,as fluctuations in water flow and nutrient input may alter ecosystem functioning and productivity.
文摘Objective:To evaluate the effectiveness of digital-intelligent health education for patients undergoing maintenance hemodialysis.Methods:From December 2023 to December 2024,82 patients undergoing maintenance hemodialysis in our hospital were selected and randomly divided into an observation group(n=41,receiving routine health education)and a control group(n=41,receiving digital health education).The levels of knowledge,belief,and behavior related to dry weight control,as well as changes in dry weight and complications,were compared before and after intervention.Results:After intervention,the observation group had higher scores for knowledge(40.96±6.43),belief(39.11±6.39),behavior(39.66±5.78),and total score(119.04±13.11)compared to the control group(p<0.05).The observation group also showed better dry weight control than the control group(p<0.05).The total incidence of complications in the observation group(4.88%,2/41)was lower than that in the control group(21.95%,9/41)(p<0.05).Conclusion:The rational application of digital-intelligent health education can effectively maintain dry weight in patients undergoing maintenance hemodialysis,reduce complications,and improve patients’knowledge,belief,and behavior levels.This approach is worthy of promotion.