期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
Detecting Drowsiness Behind the Wheel: A Lightweight Approach Based on Eye and Mouth Aspect Ratios
1
作者 Heyang Ni 《Journal of Electronic Research and Application》 2025年第4期30-38,共9页
Driver distraction is a leading cause of traffic accidents,with fatigue being a significant contributor.This paper introduces a novel method for detecting driver distraction by analyzing facial features using machine ... Driver distraction is a leading cause of traffic accidents,with fatigue being a significant contributor.This paper introduces a novel method for detecting driver distraction by analyzing facial features using machine deep learning and 68 face model.The proposed system assesses driver tiredness by measuring the distance between key facial landmarks,such as the distance between the eyes and the angle of the mouth,to evaluate signs of drowsiness or disengagement.Real-time video feed analysis allows for continuous monitoring of the driver’s face,enabling the system to detect behavioral cues associated with distraction,such as eye closures or changes in facial expressions.The effectiveness of this method is demonstrated through a series of experiments on a dataset of driver videos,which proves that the approach can accurately assess tiredness and distraction levels under various driving conditions.By focusing on facial landmarks,the system is computationally efficient and capable of operating in real-time,making it a practical solution for in-vehicle safety systems.This paper discusses the system’s performance,limitations,and potential for future enhancements,including integration with other in-vehicle technologies to provide comprehensive driver monitoring. 展开更多
关键词 Driver drowsiness detection Eye aspect ratio(EAR) Mouth aspect ratio(MAR) Facial landmark detection Real-time monitoring
在线阅读 下载PDF
Multinomial Logistic Regression Model for Predicting Driver's Drowsiness Using Only Behavioral Measures
2
作者 Atsuo Murata Kensuke Naitoh 《Journal of Traffic and Transportation Engineering》 2015年第2期80-90,共11页
The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, C... The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, COP (center of pressure) movement on sitting surface and tracking error in driving simulator task. Drowsy states were predicted by means of the multinomial logistic regression model where behavioral measures and subjective evaluation of drowsiness corresponded to independent variables and a dependent variable, respectively. First, we compared the effectiveness of two methods (correlation coefficient-based method and odds ratio-based method) for determining the order of entering behavioral measures into the prediction model. It was found that the prediction accuracy did not differ between both methods. Second, the prediction accuracy was compared among the numbers of behavioral measures. The prediction accuracy did not differ among four, five and six behavioral measures and it was concluded that entering at least four behavioral measures into the prediction model is enough to achieve higher prediction accuracy. Third, the prediction accuracy was compared between the strongly drowsy and the weakly drowsy groups. The prediction accuracy differed between the two groups and the proposed method was effective under the condition where drowsiness was induced to a larger extent. 展开更多
关键词 Drowsy driving traffic accident physiological measures behavioral measures prediction accuracy multinomial logisticregression subjective drowsiness.
在线阅读 下载PDF
A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM 被引量:3
3
作者 Sara A.Alameen Areej M.Alhothali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期895-912,共18页
Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepin... Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents.This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos.This model depends on integrating a 3D convolutional neural network(3D-CNN)and long short-term memory(LSTM).The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features within adjacent frames.The learned features are then used as the input of the LSTM component for modeling high-level temporal features.In addition,we investigate how the training of the proposed model can be affected by changing the position of the batch normalization(BN)layers in the 3D-CNN units.The BN layer is examined in two different placement settings:before the non-linear activation function and after the non-linear activation function.The study was conducted on two publicly available drowsy drivers datasets named 3MDAD and YawDD.3MDAD is mainly composed of two synchronized datasets recorded from the frontal and side views of the drivers.We show that the position of the BN layers increases the convergence speed and reduces overfitting on one dataset but not the other.As a result,the model achieves a test detection accuracy of 96%,93%,and 90%on YawDD,Side-3MDAD,and Front-3MDAD,respectively. 展开更多
关键词 3D-CNN deep learning driver drowsiness detection LSTM spatiotemporal features
在线阅读 下载PDF
Real-Time CNN-Based Driver Distraction&Drowsiness Detection System 被引量:1
4
作者 Abdulwahab Ali Almazroi Mohammed A.Alqarni +1 位作者 Nida Aslam Rizwan Ali Shah 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2153-2174,共22页
Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sle... Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them,reducing accidents.This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle.Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network(CNN)any changes by focusing on the eyes and mouth zone,precision is achieved.One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars.A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy,preoccupied,or not wearing their seat belt,this system alerts them with an alarm,and if they don’t wake up by a predetermined time of 3 s threshold,an automatic message is sent to law enforcement agencies.The suggested CNN-based model exhibits greater accuracy with 97%.It can be utilized to develop a system that detects driver attention or sleeps in real-time. 展开更多
关键词 Deep learning convolutional neural network Tensorflow drowsiness and yawn detection seat belt detection object detection
在线阅读 下载PDF
A Framework for Driver DrowsinessMonitoring Using a Convolutional Neural Network and the Internet of Things 被引量:1
5
作者 Muhamad Irsan Rosilah Hassan +3 位作者 Anwar Hassan Ibrahim Mohamad Khatim Hasan Meng Chun Lam Wan Mohd Hirwani Wan Hussain 《Intelligent Automation & Soft Computing》 2024年第2期157-174,共18页
One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the dri... One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system.Most studies have examined how the mouth and eyelids move.However,this limits the system’s ability to identify drowsiness traits.Therefore,this study designed an Accident Detection Framework(RPK)that could be used to reduce road accidents due to sleepiness and detect the location of accidents.The drowsiness detectionmodel used three facial parameters:Yawning,closed eyes(blinking),and an upright head position.This model used a Convolutional Neural Network(CNN)consisting of two phases.The initial phase involves video processing and facial landmark coordinate detection.The second phase involves developing the extraction of frame-based features using normalization methods.All these phases used OpenCV and TensorFlow.The dataset contained 5017 images with 874 open eyes images,850 closed eyes images,723 open-mouth images,725 closed-mouth images,761 sleepy-head images,and 1084 non-sleepy head images.The dataset of 5017 images was divided into the training set with 4505 images and the testing set with 512 images,with a ratio of 90:10.The results showed that the RPK design could detect sleepiness by using deep learning techniques with high accuracy on all three parameters;namely 98%for eye blinking,96%for mouth yawning,and 97%for head movement.Overall,the test results have provided an overview of how the developed RPK prototype can accurately identify drowsy drivers.These findings will have a significant impact on the improvement of road users’safety and mobility. 展开更多
关键词 Drowsy drivers convolutional neural network OPENCV MICROPROCESSOR face detection
在线阅读 下载PDF
Dual-Modal Drowsiness Detection to Enhance Driver Safety
6
作者 Yi Xuan Chew Siti Fatimah Abdul Razak +1 位作者 Sumendra Yogarayan Sharifah Noor Masidayu Sayed Ismail 《Computers, Materials & Continua》 SCIE EI 2024年第12期4397-4417,共21页
In the modern world,the increasing prevalence of driving poses a risk to road safety and necessitates the development and implementation of effective monitoring systems.This study aims to enhance road safety by propos... In the modern world,the increasing prevalence of driving poses a risk to road safety and necessitates the development and implementation of effective monitoring systems.This study aims to enhance road safety by proposing a dual-modal solution for detecting driver drowsiness,which combines heart rate monitoring and face recognition technologies.The research objectives include developing a non-contact method for detecting driver drowsiness,training and assessing the proposed system using pre-trained machine learning models,and implementing a real-time alert feature to trigger warnings when drowsiness is detected.Deep learning models based on convolutional neural networks(CNNs),including ResNet and DenseNet,were trained and evaluated.The CNN model emerged as the top performer compared to ResNet50,ResNet152v2,and DenseNet.Laboratory tests,employing different camera angles using Logitech BRIO 4K Ultra HD Pro Stream webcam produces accurate face recognition and heart rate monitoring.Real-world vehicle tests involved six participants and showcased the system’s stability in calculating heart rates and its ability to correlate lower heart rates with drowsiness.The incorporation of heart rate and face recognition technologies underscores the effectiveness of the proposed system in enhancing road safety and mitigating the risks associated with drowsy driving. 展开更多
关键词 Drowsy advanced driver assistance system driver safety on-the-road experiments
在线阅读 下载PDF
Relationship between Lifestyle, Quality of Sleep, and Daytime Drowsiness of Nursing Students of University A
7
作者 Miki Sato Hirokazu Ito +4 位作者 Hiroko Sugimoto Tetsuya Tanioka Yuko Yasuhara Rozzano Locsin Beth King 《Open Journal of Psychiatry》 2017年第1期61-70,共10页
The harmful effects of technological devices, including smart phones have been increasingly suspected among university students;bedtimes have become increasingly later at night, and leisure activities often extend thr... The harmful effects of technological devices, including smart phones have been increasingly suspected among university students;bedtimes have become increasingly later at night, and leisure activities often extend through the night. Likewise, availability and need of increasing part-time job hours have been considered. The purpose of this research was to determine the relationship among lifestyles, quality of sleep, and daytime drowsiness of nursing students of University A. The research was conducted in June 2015, when student life rhythms were considered stable after two months of lectures. Responses with missing values or with inappropriate answers were excluded. Of the data collected from 96 respondents, only 71 were acceptable. The survey focused on lifestyle, daytime sleepiness (using ESS: Epworth Sleepiness Scale) and quality of subjective sleep (using the PSQI: Pittsburgh Sleep Quality Index). Approval was obtained from the Research Ethics Committee of Shikoku University. While in this study, more than half (63.4%) of the students had poor quality of sleep, however, there was no relationship between their quality of sleep and daytime drowsiness, or between their lifestyles and the quality of sleep. These findings suggest that while university students’ use of technological devices is suspected to influence on sleep deprivation and consequent daytime drowsiness, the findings did not provide the evidence. 展开更多
关键词 UNIVERSITY STUDENTS LIFESTYLE Quality of SLEEP drowsiness at DAYTIME
暂未订购
Real-Time Detection of Human Drowsiness via a Portable Brain-Computer Interface
8
作者 Julia Shen Baiyan Li Xuefei Shi 《Open Journal of Applied Sciences》 2017年第3期98-113,共16页
In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was suc... In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was successfully developed. These markers are invariant from voltage amplitude of brain waves, eliminating the need for calibrating the voltage output of the brain-computer interface devices. A new polling algorithm was designed and implemented for computing the depth of drowsiness. The time cost of data acquisition and processing for each estimate is about one second, which is well suited for real-time applications. Test results with a portable brain-computer interface device show that the depth of drowsiness computed by the method in this paper is generally invariant from ages of test subjects and sensor channels (P3 and C4). The comparison between experiment and computing results indicate that the new method is noticeably better than one of the recent methods in terms of accuracy for predicting the drowsiness. 展开更多
关键词 Brain-Computer Interface BRAIN Wave drowsiness Real-Time FOURIER TRANSFORM POLLING Algorithm
暂未订购
Excessive Drowsiness among Truck Drivers in Benin in 2023: Associated Factors and Risk of Crashes Occurrence
9
作者 Mongbo Virginie Mobali Wilondja Célestin Kpozehouen Alphonse 《Open Journal of Epidemiology》 2024年第1期167-179,共13页
Introduction: Over-drowsiness is a condition with serious consequences, including road accidents. The condition, however, is often ignored both by carers as well as victims themselves. The aim of the present study was... Introduction: Over-drowsiness is a condition with serious consequences, including road accidents. The condition, however, is often ignored both by carers as well as victims themselves. The aim of the present study was to investigate the factors associated with excessive drowsiness in Cotonou, Benin 2023, along with its influence on the occurrence of crashes among truck drivers. Methods: This was a descriptive and analytical cross-sectional study, held from March 13 to April 10, 2023, focusing on large truck drivers over 18 years of age, selected by convenience from parking lots in and around the city of Cotonou. Data collected using questionnaires on socio-demographic and behavioral factors, sleeping habits and working conditions were processed using Stata 15.0 software. Excessive drowsiness was defined by a score above 10 on the Epworth scale. Associated factors were found by multiple logistic regression, at a threshold of 0.05. Results: Altogether 304 drivers, all male and aged 35.98 ± 8.42 years, were surveyed. The prevalence of excessive drowsiness was 29.2%. The associated factors identified were not practicing sport OR = 2.27, CI95% = [1.33;3.86], p = 0,002;sleep duration per working day OR = 1.82;CI95% = [1.06;3.11], p = 0,027 and average distance travelled per day OR = 3.40;CI95% = [1.53;7.56], p = 0,003. Excessive drowsiness was associated with a 1.73-fold increased risk of road accidents (CI95% [1.04;2.87];p = 0.03). Conclusion: Communicating excessive drowsiness and its associated factors to all the stakeholders in the haulage chain is essential to help prevent road accidents. 展开更多
关键词 drowsiness Large Trucks Accidents BENIN
在线阅读 下载PDF
Prediction of Point in Time with High Crash Risk by Integration of Bayesian Estimation of Drowsiness, Tracking Error, and Subjective Drowsiness
10
作者 Atsuo Murata Yohei Uragami 《Journal of Traffic and Transportation Engineering》 2018年第1期1-15,共15页
The aim of this study was to predict drivers' drowsy states with high risk of encountering a crash and prevent drivers from continuing to drive under such drowsy states with high risk of crash. While the participants... The aim of this study was to predict drivers' drowsy states with high risk of encountering a crash and prevent drivers from continuing to drive under such drowsy states with high risk of crash. While the participants were required to carry out a simulated driving task, EEG (Electro encephalography) (EEG-MPF and EEG-α/β), ECG (Electrocradiogram) (RRV3), t racking error, an d subjective rating on drowsiness were measured. On the basis of such measurements, an attempt was made to predict the point in time with high crash risk using Bayesian estimation of posterior probability of drowsiness, tracking error, and subjective drowsiness. As a result of applying the proposed method to the data of each participant, it was verified that the proposed method could predict the point in time with high crash risk before the point in time of crash. 展开更多
关键词 Bayesian estimation drowsy driving simulated driving task tracking error physiological measure crash risk.
在线阅读 下载PDF
面向交通安全的多任务卷积神经网络疲劳驾驶检测算法优化与性能分析
11
作者 王娟 《无线互联科技》 2025年第23期76-82,共7页
针对传统单任务疲劳驾驶检测方法在复杂车载环境下检测准确率较低、抗干扰性能差和实时响应速度较慢的问题,文章提出基于多任务卷积神经网络算法(Multi-Task Convolutional Neural Network,MTCNN),采用“共享特征提取层+任务专属处理层... 针对传统单任务疲劳驾驶检测方法在复杂车载环境下检测准确率较低、抗干扰性能差和实时响应速度较慢的问题,文章提出基于多任务卷积神经网络算法(Multi-Task Convolutional Neural Network,MTCNN),采用“共享特征提取层+任务专属处理层”的双层框架同时完成驾驶员面部特征提取、眼部状态判别、头部姿态估计以及打哈欠动作识别4项主要任务并利用CEW、NTHU-DDD、YawDD公开数据集和自行构建的复杂场景数据集作为实验基础展开对比分析验证,结果表明:MTCNN-OPT的眼部闭合检测准确率达到98.2%、打哈欠行为检测准确率达到97.5%、头部姿态估计平均绝对误差(Mean Absolute Error,MAE)为2.9°左右、综合疲劳判断准确率为96.8%、检测帧率为35 fps以及平均鲁棒性为89.8%,与传统单任务算法及基线多任务算法相比,在检测精度、实时性和复杂场景适应性方面都有明显提高,可为车载驾驶员状态监测系统(Driver Monitor System,DMS)提供较好的技术支持。 展开更多
关键词 交通安全 疲劳驾驶检测 多任务卷积神经网络 SE注意力机制 特征融合
在线阅读 下载PDF
甲氧氯普胺注射液治疗妊娠剧吐致精神异常1例
12
作者 甘丹娜 李园 +3 位作者 宋少练 王灿茂 唐春燕 梅洪梁 《医药导报》 北大核心 2025年第10期1684-1687,共4页
妊娠剧吐是指妊娠早期出现的持续且严重的恶心和呕吐症状。严重的妊娠剧吐可能导致母体脱水、电解质紊乱、营养不良,甚至出现低血压和心律失常,同时可能影响胎儿的正常生长发育。甲氧氯普胺因其对妊娠剧吐的疗效和安全性已被证实,成为... 妊娠剧吐是指妊娠早期出现的持续且严重的恶心和呕吐症状。严重的妊娠剧吐可能导致母体脱水、电解质紊乱、营养不良,甚至出现低血压和心律失常,同时可能影响胎儿的正常生长发育。甲氧氯普胺因其对妊娠剧吐的疗效和安全性已被证实,成为妊娠剧吐常用药物。以往人们更多关注甲氧氯普胺引发的锥体外系反应,但对其导致的躁狂、嗜睡等精神异常反应的研究较少,尤其是在妊娠期患者中。该文报告1例妊娠剧吐患者使用甲氧氯普胺后发生精神异常症状,通过对患者病情、药物使用及不良反应的分析,探讨甲氧氯普胺导致精神异常的可能机制,并提出了孕期预防和处理甲氧氯普胺精神异常不良反应的临床建议,为医护人员合理使用该药物提供参考。 展开更多
关键词 甲氧氯普胺 妊娠剧吐 躁狂 嗜睡 精神异常
暂未订购
基于卫气“从阴绕行出阳”模式探讨餐后嗜睡的病机及临证应用
13
作者 康鹏飞 孙伯菊 +1 位作者 王聪慧 陈香美 《中医杂志》 北大核心 2025年第8期769-774,共6页
餐后嗜睡是以餐后出现显著睡意为特征的病症,《黄帝内经》认为其与卫气相关。通过梳理《黄帝内经》原文及后世医家观点,发现寤寐转换依赖卫气的“阴阳相引”,且卫气出入的两条路径在脾胃有交会。据此认为餐后嗜睡的核心病机是上焦闭塞... 餐后嗜睡是以餐后出现显著睡意为特征的病症,《黄帝内经》认为其与卫气相关。通过梳理《黄帝内经》原文及后世医家观点,发现寤寐转换依赖卫气的“阴阳相引”,且卫气出入的两条路径在脾胃有交会。据此认为餐后嗜睡的核心病机是上焦闭塞或脾胃失常致卫气滞留于内,阴阳相引,使体表卫气内陷引发嗜睡;此时滞留卫气与内陷卫气在脾胃交汇,并入脏腑循环,改道足太阳而出,形成“从阴绕行出阳”的运行模式。治疗需标本兼顾,以调节卫气流转趋向为标;助卫气从阴出阳以恢复寤寐节律为本。通过提出卫气从阴绕行出阳模式,为餐后嗜睡的理解提供新视角。 展开更多
关键词 餐后嗜睡 卫气 阴阳相引 《黄帝内经》
原文传递
持续气道正压通气对围绝经期阻塞性睡眠呼吸暂停低通气综合征患者的影响
14
作者 史兵 王东兰 潘友让 《中国妇幼保健》 2025年第15期2889-2893,共5页
目的探讨持续气道正压通气(CPAP)对围绝经期阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者氧合指标、炎症细胞因子、血气指标、多导睡眠图(PSG)指标及嗜睡程度的影响,为治疗围绝经期OSAHS患者提供参考。方法选取2023年2月—2024年9月绍兴... 目的探讨持续气道正压通气(CPAP)对围绝经期阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者氧合指标、炎症细胞因子、血气指标、多导睡眠图(PSG)指标及嗜睡程度的影响,为治疗围绝经期OSAHS患者提供参考。方法选取2023年2月—2024年9月绍兴市第七人民医院收治的100例围绝经期OSAHS患者作为研究对象,随机分为对照组与CPAP组,每组50例患者。对照组患者采用常规治疗,OSAHS组患者在对照组基础上进行CPAP治疗。比较两组患者氧合指标、炎症细胞因子、血气指标、PSG指标及嗜睡程度。结果治疗后,CPAP组动脉血氧分压(PaO2)[(85.65±6.39)mm Hg]、夜间最低血氧饱和度(LowSpO_(2))[(79.32±5.26)%]均高于对照组[(82.42±7.53)mm Hg、(72.54±6.71)%],动脉血二氧化碳分压(PaCO_(2))[(45.79±6.58)mm Hg]、夜间血氧饱和度<90%时间占总睡眠时间比值(TST90)[(4.87±2.03)%]均低于对照组[(51.20±7.24)mm Hg、(6.94±2.56)%],差异均有统计学意义(t=2.313、31.350、3.910、4.480,均P<0.05)。治疗后,CPAP组患者血清白细胞介素-6(IL-6)[(21.39±1.86)pg/ml]、血清淀粉样蛋白A(SAA)[(14.18±3.35)mg/L]、降钙素原(PCT)[(1.45±0.24)μg/L]水平均低于对照组[(33.24±2.17)pg/ml、(17.26±3.19)mg/L、(1.86±0.36)μg/L],差异均有统计学意义(t=16.950、4.708、6.701,均P<0.05)。治疗后,CPAP组血氧饱和度[(85.64±13.24)%]高于对照组[(79.43±10.25)%],血红蛋白水平[(131.46±8.35)g/L]低于对照组[(136.26±6.28)g/L],差异均有统计学意义(t=2.623、3.249,均P<0.05)。治疗后,CPAP组睡眠呼吸暂停低通气指数(AHI)[(3.26±0.38)次/h]、睡眠呼吸暂停最长时间[(12.24±5.38)s]均低于对照组[(7.43±1.52)次/h、(17.93±6.57)s],差异均有统计学意义(t=18.820、4.738,均P<0.05)。治疗后,CPAP组Epworth嗜睡量表(ESS)评分[(8.38±1.86)分]低于对照组[(10.07±1.34)分],差异有统计学意义(t=5.213,P<0.05)。结论CPAP治疗围绝经期OSAHS患者可减少呼吸暂停与低通气,改善氧合指标、机体炎症状态,降低AHI、血红蛋白水平,提升患者睡眠质量,减轻白天嗜睡等症状。 展开更多
关键词 持续气道正压通气 围绝经期 阻塞性睡眠呼吸暂停低通气综合征 氧合指标 炎症细胞因子 血气指标 多导睡眠图指标 嗜睡程度
原文传递
基于统计信息的Cache漏流功耗估算方法 被引量:1
15
作者 周宏伟 张承义 张民选 《计算机研究与发展》 EI CSCD 北大核心 2008年第2期367-374,共8页
随着工艺尺寸的缩小,漏流功耗逐渐成为制约微处理器设计的主要因素之一.Sleep Cache与Drowsy Cache是两种降低Cache漏流功耗的重要技术.基于统计信息的Cache漏流功耗估算方法(SB-CLPE)用于对Sleep Cache或Drowsy Cache进行Cache漏流功... 随着工艺尺寸的缩小,漏流功耗逐渐成为制约微处理器设计的主要因素之一.Sleep Cache与Drowsy Cache是两种降低Cache漏流功耗的重要技术.基于统计信息的Cache漏流功耗估算方法(SB-CLPE)用于对Sleep Cache或Drowsy Cache进行Cache漏流功耗估算,根据该方法设计的Cache体系结构能够在程序执行过程中实时估算Cache漏流功耗.通过对所有Cache块的访问间隔时间进行统计,SB-CLPE可以估算出使用不同衰退间隔时Cache的漏流功耗,从而得到使Cache漏流功耗最低的最佳衰退间隔.实验表明,SB-CLPE对Sleep Cache的漏流功耗的估算结果与HotLeakage漏流功耗模拟器通过模拟获得的结果相比,平均偏差仅为3.16%,得到的最佳衰退间隔也可以较好吻合.使用SB-CLPE的Cache体系结构可以用于在程序执行过程中对最佳衰退间隔进行实时估算,通过动态调整衰退间隔以达到最优的功耗降低效果. 展开更多
关键词 统计信息 漏流功耗 估算 SLEEP CACHE Drowsy CACHE
在线阅读 下载PDF
无侵入测量指标的驾驶疲劳检测性能评估 被引量:13
16
作者 胥川 王雪松 陈小鸿 《西南交通大学学报》 EI CSCD 北大核心 2014年第4期720-726,共7页
为了准确检测驾驶疲劳状态,利用高仿真度驾驶模拟器进行模拟实验,采集了驾驶行为和眼动数据,并进行了主观疲劳程度调查.在此基础上,设计了23种无侵入检测指标,从与疲劳的相关性、二元检测性能、对道路线形的敏感性和个体一致性4方面,评... 为了准确检测驾驶疲劳状态,利用高仿真度驾驶模拟器进行模拟实验,采集了驾驶行为和眼动数据,并进行了主观疲劳程度调查.在此基础上,设计了23种无侵入检测指标,从与疲劳的相关性、二元检测性能、对道路线形的敏感性和个体一致性4方面,评估了指标的性能并按综合性能排序.研究结果表明:眼闭合时间比例与主观疲劳程度(Karolinska sleepiness scale,KSS)的相关性最高,为0.443;二元检测性能最好的是眼闭合时间比例和车道偏移标准差;眼动指标在曲-直路段的变化幅度均低于20%;当KSS为7时,除车中心越线时间比例外,其余指标均存在显著的个体差异;综合性能最高的指标依次为车道偏移标准差、闭眼时间比例和越线期间横向平均速度. 展开更多
关键词 疲劳驾驶 无侵入测量指标 疲劳检测 驾驶模拟器
在线阅读 下载PDF
基于决策树的驾驶疲劳等级分析与判定 被引量:12
17
作者 胥川 王雪松 +1 位作者 陈小鸿 张惠 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期75-81,共7页
为了提高疲劳检测的精度,通过驾驶模拟试验采集了15位中青年有经验驾驶员的车辆横向位置、方向盘操控、眼动等多源数据并计算疲劳特征指标,同时采集驾驶员主观疲劳程度并通过视频回放进行校核,在此基础上建立疲劳等级与特征指标的决策... 为了提高疲劳检测的精度,通过驾驶模拟试验采集了15位中青年有经验驾驶员的车辆横向位置、方向盘操控、眼动等多源数据并计算疲劳特征指标,同时采集驾驶员主观疲劳程度并通过视频回放进行校核,在此基础上建立疲劳等级与特征指标的决策树模型,结果表明,对于区别疲劳等级最显著的变量有闭眼时间比例(percentage of eye closure,PERCLOS)、车道偏移标准差、越线时空面积、方向盘反转率,且上述变量与疲劳等级呈正相关;PERCLOS为最优的疲劳等级划分变量,并获取了2个重要阈值:当PERCLOS小于2.8%时,驾驶员处于严重疲劳状态的比例为零;当PERCLOS大于21.9%时,驾驶员处于未疲劳状态的比例为零;该模型预测的总正确率为64.31%.为了校验模型,从15位驾驶员中随机选取了4位进行模型校验试验.校核结果表明该模型的正确率达63.22%.模型在2次试验中都未发现将严重疲劳识别为未疲劳的情况. 展开更多
关键词 驾驶模拟器 疲劳驾驶 决策树 疲劳等级 生理参数 驾驶行为参数
在线阅读 下载PDF
基于驾驶员转向操作特性的疲劳驾驶检测 被引量:15
18
作者 屈肖蕾 成波 +1 位作者 林庆峰 李升波 《汽车工程》 EI CSCD 北大核心 2013年第9期803-807,831,共6页
本文旨在利用驾驶模拟器开展疲劳驾驶试验,研究疲劳驾驶的检测方法。首先采用面部视频的专家评分方法,建立驾驶员3级疲劳(清醒、疲劳和非常疲劳)的样本数据库;然后定量提取描述疲劳操作特性的特征指标,采用序列浮动前向选择算法筛选最... 本文旨在利用驾驶模拟器开展疲劳驾驶试验,研究疲劳驾驶的检测方法。首先采用面部视频的专家评分方法,建立驾驶员3级疲劳(清醒、疲劳和非常疲劳)的样本数据库;然后定量提取描述疲劳操作特性的特征指标,采用序列浮动前向选择算法筛选最优的特征指标组合,最终建立了一种基于SVM的驾驶员3级疲劳的在线检测算法。测试结果表明,驾驶模拟器工况下,本文算法识别3级疲劳的准确率达到87.7%,具有较高的鲁棒性和实用性。 展开更多
关键词 疲劳驾驶 转向操作 车辆状态 支持向量机
在线阅读 下载PDF
驾驶员瞌睡的视频监测研究 被引量:8
19
作者 周玉彬 俞梦孙 +1 位作者 金章瑞 张洪金 《北京生物医学工程》 2003年第1期30-33,共4页
驾驶员睡眠不足是引发恶性交通事故的重要原因之一 ,对驾驶员机能状态的监测方法是当前各国交通部门研究热点。其中 ,用视频的方法对眼睑的实时监测是被公认的一种有效的方法。我们在对当前的几种常用的监测方法研究后 ,提出了一种可靠... 驾驶员睡眠不足是引发恶性交通事故的重要原因之一 ,对驾驶员机能状态的监测方法是当前各国交通部门研究热点。其中 ,用视频的方法对眼睑的实时监测是被公认的一种有效的方法。我们在对当前的几种常用的监测方法研究后 ,提出了一种可靠的监测方案 ,主要是用于飞行员驾驶时瞌睡的测量。同一般的车辆疲劳监测系统相比 ,有可靠、不受天气影响等优点 ,但是 ,该系统必须依赖于特制的头盔 ,因此 。 展开更多
关键词 疲劳驾驶 飞行员 驾驶员 视频监测 机能状态 眼睑活动
暂未订购
驾驶疲劳/瞌睡检测方法的研究进展 被引量:35
20
作者 王磊 吴晓娟 俞梦孙 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2007年第1期245-248,共4页
驾驶中的疲劳/瞌睡是引发恶性交通事故的重要原因之一,每年造成大量人员伤亡,直接或间接导致巨额经济损失,因此驾驶疲劳/瞌睡检测技术成为各国研究的热点。介绍了国内外该技术的发展状况,并按照检测特征的不同分类介绍了各种方法,最后... 驾驶中的疲劳/瞌睡是引发恶性交通事故的重要原因之一,每年造成大量人员伤亡,直接或间接导致巨额经济损失,因此驾驶疲劳/瞌睡检测技术成为各国研究的热点。介绍了国内外该技术的发展状况,并按照检测特征的不同分类介绍了各种方法,最后提出了目前驾驶中疲劳/瞌睡检测技术面临的挑战和今后需要展开的工作。 展开更多
关键词 驾驶疲劳/瞌睡 计算机视觉 信息融合
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部