The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finite- difference method coupled with...The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finite- difference method coupled with the front-tracking technique.The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity.To validate the present calculation,some typical results are compared with available computational and theoretical data,which confirms that the present approach is reliable in predicting the drop migration. With respect to the drop migration in the channel flow at finite Reynolds numbers,the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions. The effects of some typical parameters,e.g.,the Reynolds number,the Weber number,the viscosity ratio and the density ratio of the drop fluid to the suspending medium,and the drop size,on the migration of drops are discussed and analyzed.展开更多
The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and ...The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds numberRe=O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.展开更多
基金The project supported by the National Natural Science Foundation of China (10125210) and the Hundred-Talent Programme of the Chinese Academy of Sciences
文摘The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finite- difference method coupled with the front-tracking technique.The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity.To validate the present calculation,some typical results are compared with available computational and theoretical data,which confirms that the present approach is reliable in predicting the drop migration. With respect to the drop migration in the channel flow at finite Reynolds numbers,the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions. The effects of some typical parameters,e.g.,the Reynolds number,the Weber number,the viscosity ratio and the density ratio of the drop fluid to the suspending medium,and the drop size,on the migration of drops are discussed and analyzed.
基金The project supported by the National Natural Science Foundation (19789201) the Ministry of Science Technology of China (95-Yu-34)
文摘The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds numberRe=O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.