As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all ...The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.展开更多
To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention predicti...To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.展开更多
Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.Ho...Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species.展开更多
The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions f...The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions for enhancing the efficiency and scope of urban condition assessments.In this context,this paper introduces an innovative algorithm designed to navigate a swarm of drones through urban landscapes for monitoring tasks.The primary challenge addressed by the algorithm is coordinating drone movements from one location to another while circumventing obstacles,such as buildings.The algorithm incorporates three key components to optimize the obstacle detection,navigation,and energy efficiency within a drone swarm.First,the algorithm utilizes a method to calculate the position of a virtual leader,acting as a navigational beacon to influence the overall direction of the swarm.Second,the algorithm identifies observers within the swarm based on the current orientation.To further refine obstacle avoidance,the third component involves the calculation of angular velocity using fuzzy logic.This approach considers the proximity of detected obstacles through operational rangefinders and the target’s location,allowing for a nuanced and adaptable computation of angular velocity.The integration of fuzzy logic enables the drone swarm to adapt to diverse urban conditions dynamically,ensuring practical obstacle avoidance.The proposed algorithm demonstrates enhanced performance in the obstacle detection and navigation accuracy through comprehensive simulations.The results suggest that the intelligent obstacle avoidance algorithm holds promise for the safe and efficient deployment of autonomous mobile drones in urban monitoring applications.展开更多
Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking ca...Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.展开更多
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
文摘The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.
文摘To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.
基金financial support of the Belgian National Fund for Scientific Research(FNRS)the Duesberg Foundation,and the University of Liège.
文摘Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species.
文摘The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions for enhancing the efficiency and scope of urban condition assessments.In this context,this paper introduces an innovative algorithm designed to navigate a swarm of drones through urban landscapes for monitoring tasks.The primary challenge addressed by the algorithm is coordinating drone movements from one location to another while circumventing obstacles,such as buildings.The algorithm incorporates three key components to optimize the obstacle detection,navigation,and energy efficiency within a drone swarm.First,the algorithm utilizes a method to calculate the position of a virtual leader,acting as a navigational beacon to influence the overall direction of the swarm.Second,the algorithm identifies observers within the swarm based on the current orientation.To further refine obstacle avoidance,the third component involves the calculation of angular velocity using fuzzy logic.This approach considers the proximity of detected obstacles through operational rangefinders and the target’s location,allowing for a nuanced and adaptable computation of angular velocity.The integration of fuzzy logic enables the drone swarm to adapt to diverse urban conditions dynamically,ensuring practical obstacle avoidance.The proposed algorithm demonstrates enhanced performance in the obstacle detection and navigation accuracy through comprehensive simulations.The results suggest that the intelligent obstacle avoidance algorithm holds promise for the safe and efficient deployment of autonomous mobile drones in urban monitoring applications.
基金supported in part by Interbit Research and in part by the European Union under(Grant No.2021-1-EL01-KA220-VET-000028082).
文摘Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.