Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones...Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.展开更多
The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all ...The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.展开更多
With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,s...With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.展开更多
Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone...Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.展开更多
Inspection is a fundamental task for water plants,yet traditional methods are often labor-intensive,time-consuming,and costly.The rapid advancement of drone technology has significantly transformed environmental inspe...Inspection is a fundamental task for water plants,yet traditional methods are often labor-intensive,time-consuming,and costly.The rapid advancement of drone technology has significantly transformed environmental inspections,particularly in water plant assessments.Digital twins enhance modeling and simulation capabilities by integrating real-time data and feedback.This paper presents an intelligent water plant detection system based on YOLOv10 and drone technology.The system aims to monitor environmental conditions around water facilities and automatically identify anomalies in real time.The design utilizes dataset images of construction vehicles,maintenance hole covers,and pipe leaks collected from publicly accessible websites.The system integrates real-time drone inspection data into a digital twin platform for dynamic monitoring.展开更多
Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communi...Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communication requirements and challenges encountered in Meituan UAV’s daily oper-ations,this article first introduces the operational sce-narios within current drone logistics networks and an-alyzes the related communication requirements.Then,the current communication solution and its inherent bottlenecks are elaborated.Finally,this paper explores emerging technologies and examines their application prospects in drone logistics networks.展开更多
To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention predicti...To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.展开更多
Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.Ho...Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
Drone technology opens the door to major changes and opportunities in our society.But this technology,like many others,needs to be administered and regulated to prevent potential harm to the public.Therefore,national ...Drone technology opens the door to major changes and opportunities in our society.But this technology,like many others,needs to be administered and regulated to prevent potential harm to the public.Therefore,national and local governments around the world established regulations for operating drones,which bans drone use from specific locations or limits their operation to qualified drone pilots only.This study reviews the types of restrictions on drone use that are specified in federal drone regulations for the US,the UK,and France,and in state regulations for the US.The study also maps restricted areas and assesses compliance with these regulations by analyzing the spatial contribution patterns to three crowd-sourced drone portals,namely SkyPixel,Flickr,and DroneSpot,relative to restricted areas.The analysis is performed both at the national level and at the state/regional level within each of the three countries,where statistical tests are conducted to compare compliance rates between the three drone portals.This study provides new insight into drone users’awareness of and compliance with drone regulations.This can help governments to tailor information campaigns for increased awareness of drone regulations among drone users and to determine where increased control and enforcement of drone regulations is necessary.展开更多
The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions f...The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions for enhancing the efficiency and scope of urban condition assessments.In this context,this paper introduces an innovative algorithm designed to navigate a swarm of drones through urban landscapes for monitoring tasks.The primary challenge addressed by the algorithm is coordinating drone movements from one location to another while circumventing obstacles,such as buildings.The algorithm incorporates three key components to optimize the obstacle detection,navigation,and energy efficiency within a drone swarm.First,the algorithm utilizes a method to calculate the position of a virtual leader,acting as a navigational beacon to influence the overall direction of the swarm.Second,the algorithm identifies observers within the swarm based on the current orientation.To further refine obstacle avoidance,the third component involves the calculation of angular velocity using fuzzy logic.This approach considers the proximity of detected obstacles through operational rangefinders and the target’s location,allowing for a nuanced and adaptable computation of angular velocity.The integration of fuzzy logic enables the drone swarm to adapt to diverse urban conditions dynamically,ensuring practical obstacle avoidance.The proposed algorithm demonstrates enhanced performance in the obstacle detection and navigation accuracy through comprehensive simulations.The results suggest that the intelligent obstacle avoidance algorithm holds promise for the safe and efficient deployment of autonomous mobile drones in urban monitoring applications.展开更多
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ...Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.展开更多
Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking ca...Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.展开更多
In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial dat...In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial data,alongside collecting data from distributed sensors supplemented by location data.The interception of the data sent from the drone to the station can lead to substantial threats.To address this issue,highly confidential protection methods must be employed.This paper introduces a novel steganography approach called the Shuffling Steganography Approach(SSA).SSA encompasses five fundamental stages and three proposed algorithms,designed to enhance security through strategic encryption and data hiding techniques.Notably,this method introduces advanced resistance to brute force attacks by employing predefined patterns across a wide array of images,complicating unauthorized access.The initial stage involves encryption,dividing,and disassembling the encrypted data.A small portion of the encrypted data is concealed within the text(Algorithm 1)in the third stage.Subsequently,the parts are merged and mixed(Algorithm 2),and finally,the composed text is hidden within an image(Algorithm 3).Through meticulous investigation and comparative analysis with existing methodologies,the proposed approach demonstrates superiority across various pertinent criteria,including robustness,secret message size capacity,resistance to multiple attacks,and multilingual support.展开更多
Content delivery networks(CDNs)lead to fast content distribution through content caching at specific CDN servers near end users.However,existing CDNs based on infrastructure cannot be employed in special cases,such as...Content delivery networks(CDNs)lead to fast content distribution through content caching at specific CDN servers near end users.However,existing CDNs based on infrastructure cannot be employed in special cases,such as military operations.Thus,a temporary CDN without an existing infrastructure is required.To achieve this goal,we introduce a new CDN for drone-aided ad hoc networks,whereby multiple drones form ad hoc networks and quickly store specific content according to new caching algorithms.Unlike the typical CDN server,the content-caching algorithm in the proposed architecture considers the limited storage capacity of the drone.We present three content distribution algorithms that consider the constraints and mobility of drones.The main contribution of content caching for drone-aided ad hoc networks is to keep partial segments rather than whole content as well as move the drone near to area with a high volume of requests.The proposed scheme is evaluated to demonstrate its feasibility in terms of content acquisition time and utilization in several practical scenarios through simulations.Consequently,acquisition time in CDN to support drone movement is improved by approximately 50%and 40%rather than one in the proposed naive greedy approach as a function of content request interval and size,respectively.展开更多
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62276204 and 62203343)the Fundamental Research Funds for the Central Universities(No.YJSJ24011)+1 种基金the Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)the China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.
文摘The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.
文摘With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.
文摘Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.
文摘Inspection is a fundamental task for water plants,yet traditional methods are often labor-intensive,time-consuming,and costly.The rapid advancement of drone technology has significantly transformed environmental inspections,particularly in water plant assessments.Digital twins enhance modeling and simulation capabilities by integrating real-time data and feedback.This paper presents an intelligent water plant detection system based on YOLOv10 and drone technology.The system aims to monitor environmental conditions around water facilities and automatically identify anomalies in real time.The design utilizes dataset images of construction vehicles,maintenance hole covers,and pipe leaks collected from publicly accessible websites.The system integrates real-time drone inspection data into a digital twin platform for dynamic monitoring.
基金supported by Shenzhen Science and Technology Program(KJZD20230923115210021)。
文摘Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communication requirements and challenges encountered in Meituan UAV’s daily oper-ations,this article first introduces the operational sce-narios within current drone logistics networks and an-alyzes the related communication requirements.Then,the current communication solution and its inherent bottlenecks are elaborated.Finally,this paper explores emerging technologies and examines their application prospects in drone logistics networks.
文摘To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.
基金financial support of the Belgian National Fund for Scientific Research(FNRS)the Duesberg Foundation,and the University of Liège.
文摘Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
文摘Drone technology opens the door to major changes and opportunities in our society.But this technology,like many others,needs to be administered and regulated to prevent potential harm to the public.Therefore,national and local governments around the world established regulations for operating drones,which bans drone use from specific locations or limits their operation to qualified drone pilots only.This study reviews the types of restrictions on drone use that are specified in federal drone regulations for the US,the UK,and France,and in state regulations for the US.The study also maps restricted areas and assesses compliance with these regulations by analyzing the spatial contribution patterns to three crowd-sourced drone portals,namely SkyPixel,Flickr,and DroneSpot,relative to restricted areas.The analysis is performed both at the national level and at the state/regional level within each of the three countries,where statistical tests are conducted to compare compliance rates between the three drone portals.This study provides new insight into drone users’awareness of and compliance with drone regulations.This can help governments to tailor information campaigns for increased awareness of drone regulations among drone users and to determine where increased control and enforcement of drone regulations is necessary.
文摘The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions for enhancing the efficiency and scope of urban condition assessments.In this context,this paper introduces an innovative algorithm designed to navigate a swarm of drones through urban landscapes for monitoring tasks.The primary challenge addressed by the algorithm is coordinating drone movements from one location to another while circumventing obstacles,such as buildings.The algorithm incorporates three key components to optimize the obstacle detection,navigation,and energy efficiency within a drone swarm.First,the algorithm utilizes a method to calculate the position of a virtual leader,acting as a navigational beacon to influence the overall direction of the swarm.Second,the algorithm identifies observers within the swarm based on the current orientation.To further refine obstacle avoidance,the third component involves the calculation of angular velocity using fuzzy logic.This approach considers the proximity of detected obstacles through operational rangefinders and the target’s location,allowing for a nuanced and adaptable computation of angular velocity.The integration of fuzzy logic enables the drone swarm to adapt to diverse urban conditions dynamically,ensuring practical obstacle avoidance.The proposed algorithm demonstrates enhanced performance in the obstacle detection and navigation accuracy through comprehensive simulations.The results suggest that the intelligent obstacle avoidance algorithm holds promise for the safe and efficient deployment of autonomous mobile drones in urban monitoring applications.
基金supported by the NationalNatural Science Foundation of China(No.61866023).
文摘Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.
基金supported in part by Interbit Research and in part by the European Union under(Grant No.2021-1-EL01-KA220-VET-000028082).
文摘Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.
基金funded by the Research Deanship of the Islamic University of Madinah under grant number 966.
文摘In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial data,alongside collecting data from distributed sensors supplemented by location data.The interception of the data sent from the drone to the station can lead to substantial threats.To address this issue,highly confidential protection methods must be employed.This paper introduces a novel steganography approach called the Shuffling Steganography Approach(SSA).SSA encompasses five fundamental stages and three proposed algorithms,designed to enhance security through strategic encryption and data hiding techniques.Notably,this method introduces advanced resistance to brute force attacks by employing predefined patterns across a wide array of images,complicating unauthorized access.The initial stage involves encryption,dividing,and disassembling the encrypted data.A small portion of the encrypted data is concealed within the text(Algorithm 1)in the third stage.Subsequently,the parts are merged and mixed(Algorithm 2),and finally,the composed text is hidden within an image(Algorithm 3).Through meticulous investigation and comparative analysis with existing methodologies,the proposed approach demonstrates superiority across various pertinent criteria,including robustness,secret message size capacity,resistance to multiple attacks,and multilingual support.
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-004)the Institute for Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-II221200,Convergence Security Core Talent Training Business(Chungnam National University)).
文摘Content delivery networks(CDNs)lead to fast content distribution through content caching at specific CDN servers near end users.However,existing CDNs based on infrastructure cannot be employed in special cases,such as military operations.Thus,a temporary CDN without an existing infrastructure is required.To achieve this goal,we introduce a new CDN for drone-aided ad hoc networks,whereby multiple drones form ad hoc networks and quickly store specific content according to new caching algorithms.Unlike the typical CDN server,the content-caching algorithm in the proposed architecture considers the limited storage capacity of the drone.We present three content distribution algorithms that consider the constraints and mobility of drones.The main contribution of content caching for drone-aided ad hoc networks is to keep partial segments rather than whole content as well as move the drone near to area with a high volume of requests.The proposed scheme is evaluated to demonstrate its feasibility in terms of content acquisition time and utilization in several practical scenarios through simulations.Consequently,acquisition time in CDN to support drone movement is improved by approximately 50%and 40%rather than one in the proposed naive greedy approach as a function of content request interval and size,respectively.
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.