Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones...Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.展开更多
The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all ...The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.展开更多
Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone...Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.展开更多
With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,s...With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.展开更多
Inspection is a fundamental task for water plants,yet traditional methods are often labor-intensive,time-consuming,and costly.The rapid advancement of drone technology has significantly transformed environmental inspe...Inspection is a fundamental task for water plants,yet traditional methods are often labor-intensive,time-consuming,and costly.The rapid advancement of drone technology has significantly transformed environmental inspections,particularly in water plant assessments.Digital twins enhance modeling and simulation capabilities by integrating real-time data and feedback.This paper presents an intelligent water plant detection system based on YOLOv10 and drone technology.The system aims to monitor environmental conditions around water facilities and automatically identify anomalies in real time.The design utilizes dataset images of construction vehicles,maintenance hole covers,and pipe leaks collected from publicly accessible websites.The system integrates real-time drone inspection data into a digital twin platform for dynamic monitoring.展开更多
Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communi...Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communication requirements and challenges encountered in Meituan UAV’s daily oper-ations,this article first introduces the operational sce-narios within current drone logistics networks and an-alyzes the related communication requirements.Then,the current communication solution and its inherent bottlenecks are elaborated.Finally,this paper explores emerging technologies and examines their application prospects in drone logistics networks.展开更多
Fusarium head blight(FHB)is a serious fungal disease that affect small grain cereals,causing significant wheat(Triticum aestivum L.)yield and quality losses globally.Breeding disease-resistant wheat varieties is key t...Fusarium head blight(FHB)is a serious fungal disease that affect small grain cereals,causing significant wheat(Triticum aestivum L.)yield and quality losses globally.Breeding disease-resistant wheat varieties is key to address FHB-related challenges,but its progress is delayed by traditional methods due to the small-scale,laborious and relatively subjective nature of manual assessment.This study presents a new approach that combines ultralow-altitude drone phenotyping with an optimized You Only Look Once(YOLO)model to examine FHB in wheat,enabling us to perform large-scale and automated symptomatic analysis of this disease.We first established an Open FHB(OFHB)training dataset,consisting of 4867 diseased and 106,801 healthy spikes collected from 132 commercial breeding lines during FHB progression.Then,a deep learning model called YOLOv8-WFD was trained for detecting healthy and diseased spikes,followed by an adaptive Excess Green method to identify symptomatic regions and thus FHBrelated traits on spikes.To study resistance levels,we employed an unsupervised SHapley Additive exPlanations(SHAP)method to pinpoint key traits between 10 and 20 d after inoculation(DAIs),resulting in the classification of 423 varieties trialed during the 2023–2024 growing seasons into four resistance levels(i.e.,highly and moderately susceptible,and moderately and highly resistant),which were highly correlated with field specialists’evaluations.Finally,we derived disease developmental curves based on measures of key traits during 10–20 DAI,quantifying varietal disease progression patterns over time.To our knowledge,this work represents a significant advancement in large-scale disease phenotyping and automated analysis of FHB in wheat,providing a valuable toolkit for breeders and plant researchers to assess resistance levels,select disease-resistant varieties,and understand dynamics of the fungal disease.展开更多
To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention predicti...To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.展开更多
Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.Ho...Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Cont...With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Control Server(GCS)located in each region identifies drone swarmmembers to prevent unauthorized drones from trespassing.Studies on drone identification have been actively conducted,but existing studies did not consider multiple drone identification environments.Thus,developing a secure and effective identification mechanism for drone swarms is necessary.We suggested a novel approach for the remote identification of drone swarms.For an efficient identification process between the drone swarm and the GCS,each Reader drone in the region collects the identification information of the drone swarmand submits it to the GCS for verification.The proposed identification protocol reduces the verification time for a drone swarm by utilizing batch verification to verify numerous drones in a drone swarmsimultaneously.To prove the security and correctness of the proposed protocol,we conducted a formal security verification using ProVerif,an automatic cryptographic protocol verifier.We also implemented a non-flying drone swarmprototype usingmultiple Raspberry Pis to evaluate the proposed protocol’s computational overhead and effectiveness.We showed simulation results regarding various drone simulation scenarios.展开更多
The smart city comprises various interlinked elements which communicate data and offers urban life to citizen.Unmanned Aerial Vehicles(UAV)or drones were commonly employed in different application areas like agricultu...The smart city comprises various interlinked elements which communicate data and offers urban life to citizen.Unmanned Aerial Vehicles(UAV)or drones were commonly employed in different application areas like agriculture,logistics,and surveillance.For improving the drone flying safety and quality of services,a significant solution is for designing the Internet of Drones(IoD)where the drones are utilized to gather data and people communicate to the drones of a specific flying region using the mobile devices is for constructing the Internet-of-Drones,where the drones were utilized for collecting the data,and communicate with others.In addition,the SIRSS-CIoD technique derives a tuna swarm algorithm-based clustering(TSA-C)technique to choose cluster heads(CHs)and organize clusters in IoV networks.Besides,the SIRSS-CIoD technique involves the design of a biogeography-based optimization(BBO)technique to an optimum route selection(RS)process.The design of clustering and routing techniques for IoD networks in smart cities shows the novelty of the study.A wide range of experimental analyses is carried out and the comparative study highlighted the improved performance of the SIRSS-CIoD technique over the other approaches.展开更多
Drone technology opens the door to major changes and opportunities in our society.But this technology,like many others,needs to be administered and regulated to prevent potential harm to the public.Therefore,national ...Drone technology opens the door to major changes and opportunities in our society.But this technology,like many others,needs to be administered and regulated to prevent potential harm to the public.Therefore,national and local governments around the world established regulations for operating drones,which bans drone use from specific locations or limits their operation to qualified drone pilots only.This study reviews the types of restrictions on drone use that are specified in federal drone regulations for the US,the UK,and France,and in state regulations for the US.The study also maps restricted areas and assesses compliance with these regulations by analyzing the spatial contribution patterns to three crowd-sourced drone portals,namely SkyPixel,Flickr,and DroneSpot,relative to restricted areas.The analysis is performed both at the national level and at the state/regional level within each of the three countries,where statistical tests are conducted to compare compliance rates between the three drone portals.This study provides new insight into drone users’awareness of and compliance with drone regulations.This can help governments to tailor information campaigns for increased awareness of drone regulations among drone users and to determine where increased control and enforcement of drone regulations is necessary.展开更多
Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing ...Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing systems that use drones as platforms are important for filling data gaps and supplementing the capabilities of crewed/manned aircraft and satellite remote sensing systems. Here, we refer to this growing remote sensing ini- tiative as drone remote sensing and explain its unique advantages in forestry research and practices. Furthermore, we summarize the various approaches of drone remote sensing to surveying forests, mapping canopy gaps, mea- suring forest canopy height, tracking forest wildfires, and supporting intensive forest management. The benefits of drone remote sensing include low material and operational costs, flexible control of spatial and temporal resolution, high-intensity data collection, and the absence of risk to crews. The current forestry applications of drone remote sensing are still at an experimental stage, but they are expected to expand rapidly. To better guide the development of drone remote sensing for sustainable forestry, it isimportant to systematically and continuously conduct comparative studies to determine the appropriate drone remote sensing technologies for various forest conditions and/or forestry applications.展开更多
Pine wilt disease(PWD)has recently caused substantial pine tree losses in Republic of Korea.PWD is considered a severe problem due to the importance of pine trees to Korean people,so this problem must be handled appro...Pine wilt disease(PWD)has recently caused substantial pine tree losses in Republic of Korea.PWD is considered a severe problem due to the importance of pine trees to Korean people,so this problem must be handled appropriately.Previously,we examined the history of PWD and found that it had already spread to some regions of Republic of Korea;these became our study area.Early detection of PWD is required.We used drone remote sensing techniques to detect trees with similar symptoms to trees infected with PWD.Drone remote sensing was employed because it yields high-quality images and can easily reach the locations of pine trees.To differentiate healthy pine trees from those with PWD,we produced a land cover(LC)map from drone images collected from the villages of Anbi and Wonchang by classifying them using two classifier methods,i.e.,artificial neural network(ANN)and support vector machine(SVM).Furthermore,compared the accuracy of two types of Global Positioning System(GPS)data,collected using drone and hand-held devices,for identifying the locations of trees with PWD.We then divided the drone images into six LC classes for each study area and found that the SVM was more accurate than the ANN at classifying trees with PWD.In Anbi,the SVM had an overall accuracy of 94.13%,which is 6.7%higher than the overall accuracy of the ANN,which was 87.43%.We obtained similar results in Wonchang,for which the accuracy of the SVM and ANN was 86.59%and 79.33%,respectively.In terms of the GPS data,we used two type of hand-held GPS device.GPS device 1 is corrected by referring to the benchmarks sited on both locations,while the GPS device 2 is uncorrected device which used the default setting of the GPS only.The data collected from hand-held GPS device 1 was better than those collected using hand-held GPS device 2 in Wonchang.However,in Anbi,we obtained better results from GPS device 2 than from GPS device 1.In Anbi,the error in the data from GPS device 1 was 7.08 m,while that of the GPS device 2 data was 0.14 m.In conclusion,both classifiers can distinguish between healthy trees and those with PWD based on LC data.LC data can also be used for other types of classification.There were some differences between the hand-held and drone GPS datasets from both areas.展开更多
Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability,and the feasibility of design schemes is sensitive to the weight of structure.Sandwich box beam co...Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability,and the feasibility of design schemes is sensitive to the weight of structure.Sandwich box beam composed of carbon fiber and polymethacrylimide(PMI)foam is conducive to realize the lightweight of structure.In this study,a two-stage optimization design methodology for sandwich box beam is proposed.This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues.Subsequently,a case study was conducted using an 18-m wingspan solar drone,where the results of mechanical test verified the optimization results.For validating the use of sandwich box beam in solar drones of other scales,additional analysis was conducted based on three aspects:(A)effects of stiffness and stability constraints on the design of sandwich box beam;(B)crucial role of the weight of foam inter layer and application scope of sandwich box beam;(C)best method to improve the buckling eigenvalue of sandwich box beam.Overall,the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.展开更多
Drones,also known as mini-unmanned aerial vehicles(UAVs),are enjoying great popularity in recent years due to their advantages of low cost,easy to pilot and small size,which also makes them hard to detect.They can pro...Drones,also known as mini-unmanned aerial vehicles(UAVs),are enjoying great popularity in recent years due to their advantages of low cost,easy to pilot and small size,which also makes them hard to detect.They can provide real time situational awareness information by live videos or high definition pictures and pose serious threats to public security.In this article,we combine collaborative spectrum sensing with deep learning to effectively detect potential illegal drones with states of high uncertainty.First,we formulate the detection of potential illegal drones under illegitimate access and rogue power emission as a quaternary hypothesis test problem.Then,we propose an algorithm of image classification based on convolutional neural network which converts the cooperative spectrum sensing data at a sensing slot into one image.Furthermore,to exploit more information and improve the detection performance,we develop a trajectory classification algorithm which converts theflight process of the drones in consecutive multiple sensing slots into trajectory images.In addition,simulations are provided to verify the proposed methods’performance under various parameter configurations.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62276204 and 62203343)the Fundamental Research Funds for the Central Universities(No.YJSJ24011)+1 种基金the Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)the China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.
文摘The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.
文摘Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.
文摘With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.
文摘Inspection is a fundamental task for water plants,yet traditional methods are often labor-intensive,time-consuming,and costly.The rapid advancement of drone technology has significantly transformed environmental inspections,particularly in water plant assessments.Digital twins enhance modeling and simulation capabilities by integrating real-time data and feedback.This paper presents an intelligent water plant detection system based on YOLOv10 and drone technology.The system aims to monitor environmental conditions around water facilities and automatically identify anomalies in real time.The design utilizes dataset images of construction vehicles,maintenance hole covers,and pipe leaks collected from publicly accessible websites.The system integrates real-time drone inspection data into a digital twin platform for dynamic monitoring.
基金supported by Shenzhen Science and Technology Program(KJZD20230923115210021)。
文摘Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communication requirements and challenges encountered in Meituan UAV’s daily oper-ations,this article first introduces the operational sce-narios within current drone logistics networks and an-alyzes the related communication requirements.Then,the current communication solution and its inherent bottlenecks are elaborated.Finally,this paper explores emerging technologies and examines their application prospects in drone logistics networks.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD04025 to Xiu’e Wang)the Seed Industry Revitalization Project of Jiangsu Province(JBGS(2021)006 to Xiu’e Wang)+3 种基金the National Natural Science Foundation of China(32070400 to Ji Zhou)Ji Zhou,Robert Jackson,and Greg Deakin were partially supported by the Allan&Gill Gray Foundation’Sustainable Productivity for Crop Improvement(G118688 to the University of Cambridge and Q-20-0370 to NIAB)Ji Zhou was supported by the United Kingdom Research and Innovation’s(UKRI)Biotechnology and Bio logical Sciences Research Council(BBSRC)AI in Bioscience Grant(BB/Y513969/1 to Ji Zhou)The UK-China research activities were supported by the BBSRC’s International Partnership Grant(BB/Y514081/1 to NIAB)
文摘Fusarium head blight(FHB)is a serious fungal disease that affect small grain cereals,causing significant wheat(Triticum aestivum L.)yield and quality losses globally.Breeding disease-resistant wheat varieties is key to address FHB-related challenges,but its progress is delayed by traditional methods due to the small-scale,laborious and relatively subjective nature of manual assessment.This study presents a new approach that combines ultralow-altitude drone phenotyping with an optimized You Only Look Once(YOLO)model to examine FHB in wheat,enabling us to perform large-scale and automated symptomatic analysis of this disease.We first established an Open FHB(OFHB)training dataset,consisting of 4867 diseased and 106,801 healthy spikes collected from 132 commercial breeding lines during FHB progression.Then,a deep learning model called YOLOv8-WFD was trained for detecting healthy and diseased spikes,followed by an adaptive Excess Green method to identify symptomatic regions and thus FHBrelated traits on spikes.To study resistance levels,we employed an unsupervised SHapley Additive exPlanations(SHAP)method to pinpoint key traits between 10 and 20 d after inoculation(DAIs),resulting in the classification of 423 varieties trialed during the 2023–2024 growing seasons into four resistance levels(i.e.,highly and moderately susceptible,and moderately and highly resistant),which were highly correlated with field specialists’evaluations.Finally,we derived disease developmental curves based on measures of key traits during 10–20 DAI,quantifying varietal disease progression patterns over time.To our knowledge,this work represents a significant advancement in large-scale disease phenotyping and automated analysis of FHB in wheat,providing a valuable toolkit for breeders and plant researchers to assess resistance levels,select disease-resistant varieties,and understand dynamics of the fungal disease.
文摘To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.
基金financial support of the Belgian National Fund for Scientific Research(FNRS)the Duesberg Foundation,and the University of Liège.
文摘Sleeping site selection is essential for understanding primate behavioral ecology and survival.Identifying where species sleep helps determine priority areas and critical resources for targeted conservation efforts.However,observing sleeping sites at night is challenging,especially for species sensitive to human disturbance.Thermal infrared imaging(TIR)with drones is increasingly used for detecting and counting primates,yet it has not been utilized to investigate ecological strategies.This study investigates the sleeping site selection of the Critically Endangered black-shanked douc langur(Pygathrix nigripes)in Cát Tiên National Park,Vietnam.Our aim is to assess the feasibility of using a TIR drone to test sleeping site selection strategies in non-nesting primates,specifically examining hypotheses related to predation avoidance and food proximity.Between January and April 2023,we conducted 120 drone flights along 22 transects(~1-km long)and identified 114 sleeping sites via thermal imaging.We established 116 forest structure plots along 29 transects in non-selected sites and 65 plots within douc langur sleeping sites.Our observations reveal that douc langurs selected tall and large trees that may provide protection against predators.Additionally,they selected sleeping sites with increased access to food,such as Afzelia xylocarpa,which serves as a preferred food source during the dry season.These results highlight the effective use of TIR drones for studying douc langur sleeping site selection with minimal disturbance.Besides offering valuable insights into habitat selection and behavioral ecology for conservation,TIR drones hold great promise for the noninvasive and long-term monitoring of large-bodied arboreal species.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00225201,Development of Control Rights Protection Technology to Prevent Reverse Use of Military Unmanned Vehicles,50)by MSIT under the ITRC(Information Technology Research Center)Supported Program(IITP-2023-2018-0-01417,Industrial 5G Bigdata Based Deep Learning Models Development and Human Resource Cultivation,50)supervised by the IITP.
文摘With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Control Server(GCS)located in each region identifies drone swarmmembers to prevent unauthorized drones from trespassing.Studies on drone identification have been actively conducted,but existing studies did not consider multiple drone identification environments.Thus,developing a secure and effective identification mechanism for drone swarms is necessary.We suggested a novel approach for the remote identification of drone swarms.For an efficient identification process between the drone swarm and the GCS,each Reader drone in the region collects the identification information of the drone swarmand submits it to the GCS for verification.The proposed identification protocol reduces the verification time for a drone swarm by utilizing batch verification to verify numerous drones in a drone swarmsimultaneously.To prove the security and correctness of the proposed protocol,we conducted a formal security verification using ProVerif,an automatic cryptographic protocol verifier.We also implemented a non-flying drone swarmprototype usingmultiple Raspberry Pis to evaluate the proposed protocol’s computational overhead and effectiveness.We showed simulation results regarding various drone simulation scenarios.
基金This project was supported financially by Institution Fund projects under Grant No.(IFPIP-1266-611-1442).
文摘The smart city comprises various interlinked elements which communicate data and offers urban life to citizen.Unmanned Aerial Vehicles(UAV)or drones were commonly employed in different application areas like agriculture,logistics,and surveillance.For improving the drone flying safety and quality of services,a significant solution is for designing the Internet of Drones(IoD)where the drones are utilized to gather data and people communicate to the drones of a specific flying region using the mobile devices is for constructing the Internet-of-Drones,where the drones were utilized for collecting the data,and communicate with others.In addition,the SIRSS-CIoD technique derives a tuna swarm algorithm-based clustering(TSA-C)technique to choose cluster heads(CHs)and organize clusters in IoV networks.Besides,the SIRSS-CIoD technique involves the design of a biogeography-based optimization(BBO)technique to an optimum route selection(RS)process.The design of clustering and routing techniques for IoD networks in smart cities shows the novelty of the study.A wide range of experimental analyses is carried out and the comparative study highlighted the improved performance of the SIRSS-CIoD technique over the other approaches.
文摘Drone technology opens the door to major changes and opportunities in our society.But this technology,like many others,needs to be administered and regulated to prevent potential harm to the public.Therefore,national and local governments around the world established regulations for operating drones,which bans drone use from specific locations or limits their operation to qualified drone pilots only.This study reviews the types of restrictions on drone use that are specified in federal drone regulations for the US,the UK,and France,and in state regulations for the US.The study also maps restricted areas and assesses compliance with these regulations by analyzing the spatial contribution patterns to three crowd-sourced drone portals,namely SkyPixel,Flickr,and DroneSpot,relative to restricted areas.The analysis is performed both at the national level and at the state/regional level within each of the three countries,where statistical tests are conducted to compare compliance rates between the three drone portals.This study provides new insight into drone users’awareness of and compliance with drone regulations.This can help governments to tailor information campaigns for increased awareness of drone regulations among drone users and to determine where increased control and enforcement of drone regulations is necessary.
文摘Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing systems that use drones as platforms are important for filling data gaps and supplementing the capabilities of crewed/manned aircraft and satellite remote sensing systems. Here, we refer to this growing remote sensing ini- tiative as drone remote sensing and explain its unique advantages in forestry research and practices. Furthermore, we summarize the various approaches of drone remote sensing to surveying forests, mapping canopy gaps, mea- suring forest canopy height, tracking forest wildfires, and supporting intensive forest management. The benefits of drone remote sensing include low material and operational costs, flexible control of spatial and temporal resolution, high-intensity data collection, and the absence of risk to crews. The current forestry applications of drone remote sensing are still at an experimental stage, but they are expected to expand rapidly. To better guide the development of drone remote sensing for sustainable forestry, it isimportant to systematically and continuously conduct comparative studies to determine the appropriate drone remote sensing technologies for various forest conditions and/or forestry applications.
基金This research was supported by a grant from the National Research Foundation of Korea,provided by the Korean government(2017R1A2B4003258).
文摘Pine wilt disease(PWD)has recently caused substantial pine tree losses in Republic of Korea.PWD is considered a severe problem due to the importance of pine trees to Korean people,so this problem must be handled appropriately.Previously,we examined the history of PWD and found that it had already spread to some regions of Republic of Korea;these became our study area.Early detection of PWD is required.We used drone remote sensing techniques to detect trees with similar symptoms to trees infected with PWD.Drone remote sensing was employed because it yields high-quality images and can easily reach the locations of pine trees.To differentiate healthy pine trees from those with PWD,we produced a land cover(LC)map from drone images collected from the villages of Anbi and Wonchang by classifying them using two classifier methods,i.e.,artificial neural network(ANN)and support vector machine(SVM).Furthermore,compared the accuracy of two types of Global Positioning System(GPS)data,collected using drone and hand-held devices,for identifying the locations of trees with PWD.We then divided the drone images into six LC classes for each study area and found that the SVM was more accurate than the ANN at classifying trees with PWD.In Anbi,the SVM had an overall accuracy of 94.13%,which is 6.7%higher than the overall accuracy of the ANN,which was 87.43%.We obtained similar results in Wonchang,for which the accuracy of the SVM and ANN was 86.59%and 79.33%,respectively.In terms of the GPS data,we used two type of hand-held GPS device.GPS device 1 is corrected by referring to the benchmarks sited on both locations,while the GPS device 2 is uncorrected device which used the default setting of the GPS only.The data collected from hand-held GPS device 1 was better than those collected using hand-held GPS device 2 in Wonchang.However,in Anbi,we obtained better results from GPS device 2 than from GPS device 1.In Anbi,the error in the data from GPS device 1 was 7.08 m,while that of the GPS device 2 data was 0.14 m.In conclusion,both classifiers can distinguish between healthy trees and those with PWD based on LC data.LC data can also be used for other types of classification.There were some differences between the hand-held and drone GPS datasets from both areas.
文摘Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability,and the feasibility of design schemes is sensitive to the weight of structure.Sandwich box beam composed of carbon fiber and polymethacrylimide(PMI)foam is conducive to realize the lightweight of structure.In this study,a two-stage optimization design methodology for sandwich box beam is proposed.This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues.Subsequently,a case study was conducted using an 18-m wingspan solar drone,where the results of mechanical test verified the optimization results.For validating the use of sandwich box beam in solar drones of other scales,additional analysis was conducted based on three aspects:(A)effects of stiffness and stability constraints on the design of sandwich box beam;(B)crucial role of the weight of foam inter layer and application scope of sandwich box beam;(C)best method to improve the buckling eigenvalue of sandwich box beam.Overall,the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.
基金supported by the Foundation of Graduate Innovation Center in NUAA under Grant No. kfjj20190414the open research fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Industry and Information Technology, Nanjing, 211106, China (No. KF20181913)+2 种基金National Natural Science Foundation of China (No. 61631020, No. 61871398, No. 61931011 and No. 61801216)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (No. BK20190030)the Natural Science Foundation of Jiangsu Province (No. BK20180420)
文摘Drones,also known as mini-unmanned aerial vehicles(UAVs),are enjoying great popularity in recent years due to their advantages of low cost,easy to pilot and small size,which also makes them hard to detect.They can provide real time situational awareness information by live videos or high definition pictures and pose serious threats to public security.In this article,we combine collaborative spectrum sensing with deep learning to effectively detect potential illegal drones with states of high uncertainty.First,we formulate the detection of potential illegal drones under illegitimate access and rogue power emission as a quaternary hypothesis test problem.Then,we propose an algorithm of image classification based on convolutional neural network which converts the cooperative spectrum sensing data at a sensing slot into one image.Furthermore,to exploit more information and improve the detection performance,we develop a trajectory classification algorithm which converts theflight process of the drones in consecutive multiple sensing slots into trajectory images.In addition,simulations are provided to verify the proposed methods’performance under various parameter configurations.