Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show ...Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition tim- ing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its appli- cation, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recir- culation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.展开更多
The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective ...The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective hydrogenation of acetylene as an example. Combined density functional theory calculations and microkinetic modeling reveal that the selectivity and activity of the Pd catalyst for acetylene hydrogenation can both be substantially influenced by the effects of Pd lattice strain variation and subsurface carbon species formation on the adsorption properties of the reactants and products. It is found that the adsorption energies of the reactants and products are, in general, linearly scaled with the lattice strain for both pristine and subsurface carbon atom-modified Pd(111) surfaces, except for the adsorption of C_2H_2 over Pd(111)-C. The activity for ethylene formation typically corresponds to the region of strong reactants adsorption in the volcano curve; such an effect of lattice strain and the presence of subsurface promoters can improve the activity of the catalyst through the weakening of the adsorption of reactants. The activity and selectivity for Pd(111)-C are always higher than those for the pristine Pd(111) surfaces with respect to ethylene formation. Based on the results obtained, Pd-based catalysts with shrinking lattice constants are suggested as good candidates for the selective hydrogenation of acetylene. A similar approach can be used to facilitate the future design of novel heterogeneous catalysts.展开更多
Aim: To study the DHT-binding ability of benign prostatic hypertrophy (BPH) and its etiological relationship with BPH. Methods: Cytosolic and nuclear fractions was obtained from 32 BPH tissues by superpubic prostatect...Aim: To study the DHT-binding ability of benign prostatic hypertrophy (BPH) and its etiological relationship with BPH. Methods: Cytosolic and nuclear fractions was obtained from 32 BPH tissues by superpubic prostatectomy and all the endogenous hormone were removed from the cytosolic and nuclear fractions by ether stripping. The content of the bound 3H-DHT was assayed after the addition of 3H-DHT. Results: The average DHT-binding capacity of the BPH is 0.024 nmol (protein)/g wet tissue. The DHT-binding capacity of the cytosolic and the nuclear fractions were (0.0128±0.0020) nmol/g and (0.0112±0.0059) nmol/g wet tissue, respectively, the difference of the two capacities being insignificant (P>0.05). Conclusion: The DHT-binding capacity of BPH is high and thus facilitates the effect of DHT on BPH.展开更多
采用水热处理对γ-Al2O3载体改性,并进行XRD、N2物理吸附-脱附、热重、NH3-TPD及H2-TPR表征。结果表明,γ-Al2O3经过"再水合-焙烧"过程,晶型变好,表面总酸量降低,Pt-Al2O3相互作用增加,提高了Pt Sn K/Al2O3催化剂的丙烷脱氢...采用水热处理对γ-Al2O3载体改性,并进行XRD、N2物理吸附-脱附、热重、NH3-TPD及H2-TPR表征。结果表明,γ-Al2O3经过"再水合-焙烧"过程,晶型变好,表面总酸量降低,Pt-Al2O3相互作用增加,提高了Pt Sn K/Al2O3催化剂的丙烷脱氢转化率、选择性及稳定性。其中,140℃处理4 h时,氧化铝负载的Pt Sn K催化剂表现出最优的丙烷脱氢性能,100 h内平均转化率为33.6%,平均选择性97.3%,失活参数为15.9%。展开更多
基金This work was supported by the Natural Science Foundation of Anhui Province (No.090412030).
文摘Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition tim- ing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its appli- cation, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recir- culation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
基金supported by the National Natural Science Foundation of China(21603142)the Shanghai Pujiang Program(16PJ1406800)the Shanghai Young Eastern Scholar Program(QD2016049)~~
文摘The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective hydrogenation of acetylene as an example. Combined density functional theory calculations and microkinetic modeling reveal that the selectivity and activity of the Pd catalyst for acetylene hydrogenation can both be substantially influenced by the effects of Pd lattice strain variation and subsurface carbon species formation on the adsorption properties of the reactants and products. It is found that the adsorption energies of the reactants and products are, in general, linearly scaled with the lattice strain for both pristine and subsurface carbon atom-modified Pd(111) surfaces, except for the adsorption of C_2H_2 over Pd(111)-C. The activity for ethylene formation typically corresponds to the region of strong reactants adsorption in the volcano curve; such an effect of lattice strain and the presence of subsurface promoters can improve the activity of the catalyst through the weakening of the adsorption of reactants. The activity and selectivity for Pd(111)-C are always higher than those for the pristine Pd(111) surfaces with respect to ethylene formation. Based on the results obtained, Pd-based catalysts with shrinking lattice constants are suggested as good candidates for the selective hydrogenation of acetylene. A similar approach can be used to facilitate the future design of novel heterogeneous catalysts.
文摘Aim: To study the DHT-binding ability of benign prostatic hypertrophy (BPH) and its etiological relationship with BPH. Methods: Cytosolic and nuclear fractions was obtained from 32 BPH tissues by superpubic prostatectomy and all the endogenous hormone were removed from the cytosolic and nuclear fractions by ether stripping. The content of the bound 3H-DHT was assayed after the addition of 3H-DHT. Results: The average DHT-binding capacity of the BPH is 0.024 nmol (protein)/g wet tissue. The DHT-binding capacity of the cytosolic and the nuclear fractions were (0.0128±0.0020) nmol/g and (0.0112±0.0059) nmol/g wet tissue, respectively, the difference of the two capacities being insignificant (P>0.05). Conclusion: The DHT-binding capacity of BPH is high and thus facilitates the effect of DHT on BPH.
文摘采用水热处理对γ-Al2O3载体改性,并进行XRD、N2物理吸附-脱附、热重、NH3-TPD及H2-TPR表征。结果表明,γ-Al2O3经过"再水合-焙烧"过程,晶型变好,表面总酸量降低,Pt-Al2O3相互作用增加,提高了Pt Sn K/Al2O3催化剂的丙烷脱氢转化率、选择性及稳定性。其中,140℃处理4 h时,氧化铝负载的Pt Sn K催化剂表现出最优的丙烷脱氢性能,100 h内平均转化率为33.6%,平均选择性97.3%,失活参数为15.9%。