The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circu...The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.展开更多
Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and th...Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and the fuel economy is compared among the different driver models. The different human-simulated characteristics of the driver models are emphatically analyzed. The analysis results indicate that the driver models based on PID, simple fuzzy logic and expert PID are corresponding to the handling characteristics of different drives. The driver models of different human-simulated characteristics bring the handling divergence of drivers with different driving level and habit to the HEV forward simulation, and that is significant to the all-around verification and validation of the control strategy for HEV. System simulation results of different driver models validate the impact of driver models to the dynamic and fuel economy performance of HEV.展开更多
Based on the fact that the electronic throttle angle effect performs well in the traditional car following model,this paper attempts to introduce the electronic throttle angle into the smart driver model(SDM)as an acc...Based on the fact that the electronic throttle angle effect performs well in the traditional car following model,this paper attempts to introduce the electronic throttle angle into the smart driver model(SDM)as an acceleration feedback control term,and establish an extended smart driver model considering electronic throttle angle changes with memory(ETSDM).In order to show the practicability of the extended model,the next generation simulation(NGSIM)data was used to calibrate and evaluate the extended model and the smart driver model.The calibration results show that,compared with SDM,the simulation value based on the ETSDM is better fitted with the measured data,that is,the extended model can describe the actual traffic situation more accurately.Then,the linear stability analysis of ETSDM was carried out theoretically,and the stability condition was derived.In addition,numerical simulations were explored to show the influence of the electronic throttle angle changes with memory and the driver sensitivity on the stability of traffic flow.The numerical results show that the feedback control term of electronic throttle angle changes with memory can enhance the stability of traffic flow,which shows the feasibility and superiority of the proposed model to a certain extent.展开更多
Osyris lanceolata is heavily and illegally exploited in East Africa for its essential oils, yet little is known about its population status and ecological requirements. This study examined its population structure and...Osyris lanceolata is heavily and illegally exploited in East Africa for its essential oils, yet little is known about its population status and ecological requirements. This study examined its population structure and environmental factors influencing its distribution in the semi-arid Karamoja sub-region, Uganda. We surveyed 388 plots (5 m radius) at different altitudes, recording life stages, stem diameters, and regeneration patterns, and analyzed soil samples. Multivariate analyses, including Canonical Correspondence Analysis (CCA), Detrended Correspondence Analysis (DCA), Non-metric Multidimensional Scaling (NMDS), and Multiple Regression Modeling (MRM), identified key environmental factors affecting its distribution. Findings show that O. lanceolata populations in Moroto, Nakapiripirit, and Amudat districts are severely degraded due to overexploitation. The species is primarily regenerating through coppicing rather than seedlings, with an exploitation intensity of 56.6%. Population densities are low, distribution is irregular, and sustainable harvesting is not viable. Soil properties, particularly Ca2+, N, P, K+, Na+, and organic matter, significantly influence its abundance. Conservation efforts should focus on identifying suitable provenances for genetic preservation and plantation establishment. Areas with at least 9 trees per hectare in Moroto, Nakapiripirit, and Amudat could serve as potential sites for ex-situ plantations. Further research should explore how biotic interactions, genetic diversity, and morphology affect oil yield and quality to support restoration, breeding, and domestication initiatives.展开更多
Human drivers seem to have different characteristics,so different drivers often yield different results from the same driving mode tests with identical vehicles and same chassis dynamometer.However,drivers with differ...Human drivers seem to have different characteristics,so different drivers often yield different results from the same driving mode tests with identical vehicles and same chassis dynamometer.However,drivers with different experiences often yield similar results under the same driving conditions.If the features of human drivers are known,the control inputs to each driver,including warnings,will be customized to optimize each man–machine vehicle system.Therefore,it is crucial to determine how to characterize human drivers quantitatively.This study proposes a method to estimate the parameters of a theoretical model of human drivers.The method uses an artificial neural network(ANN)model and a numerical procedure to interpret the identified ANN models theoretically.Our approach involves the following process.First,we specify each ANN driver model through chassis dynamometer tests performed by each human driver and vehicle.Subsequently,we obtain the parameters of a theoretical driver model using the ANN model for the corresponding driver.Specifically,we simulate the driver’s behaviors using the identified ANN models with controlled inputs.Finally,we estimate the theoretical driver model parameters using the numerical simulation results.A proportional-integral-differential(PID)control model is used as the theoretical model.The results of the parameter estimation indicate that the PID driver model parameter combination can characterize human drivers.Moreover,the results suggest that vehicular factors influence the parameter combinations of human drivers.展开更多
The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such inte...The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such interaction, while its counterpart, cooperative game theory is rarely discussed for similar applications despite it may be potentially more suitable. This paper describes the modelling of a human driver’s steering interaction with an automated steering system using cooperative game theory. The distributed Model Predictive Control approach is adopted to derive the driver’s and the automated steering system’s strategies in a Pareto equilibrium sense, namely their cooperative Pareto steering strategies. Two separate numerical studies are carried out to study the influence of strategy parameters, and the influence of strategy types on the driver’s and the automated system’s steering performance. It is found that when a driver interacts with an automated steering system using a cooperative Pareto steering strategy, the driver can improve his/her performance in following a target path through increasing his/her effort in pursuing his/her own interest under the driver-automation cooperative control goal. It is also found that a driver’s adoption of cooperative Pareto steering strategy leads to a reinforcement in the driver’s steering angle control, compared to the driver’s adoption of non-cooperative Nash strategy. This in turn enables the vehicle to return from a lane-change maneuver to straight-line driving swifter.展开更多
This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and differenc...This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and difference-difference equation, respectively. The stability conditions for the two models are obtained by using the linear stability theory. The modified KdV equation near the critical point is derived to describe the traffic jam by using the reductive perturbation method, and the kink-antikink soliton solutions related to the traffic density waves are obtained. The results show that the drivers' delay in sensing headway plays an important role in jamming transition.展开更多
Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control m...Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.展开更多
The effects of different habits of the drivers on gear shifting strategies for manual powertrain were investigated. For the realization of simulation, the shifting habits of the drivers were conducted in the Advisor s...The effects of different habits of the drivers on gear shifting strategies for manual powertrain were investigated. For the realization of simulation, the shifting habits of the drivers were conducted in the Advisor software to investigate and compare the emission rates. Simulation was developed based on the optimal gear shifting strategy and criteria and was validated both in fuel economy and emissions by analyzing the results in the various driving cycle and driving styles. To explore an optimal gear shifting strategy with best fuel economy and lowest emission for a manual transmission, a strategy was designed with a highest possible gear criterion as long as the torque requirement can be satisfied. Based on two different criteria, namely the engine working conditions and the driver's intention, the governing parameters in decision making for gear shifting of manual transmission in conventional engine were discussed. It is also shown that the optimum gear shifting strategy is based on that both the engine state and the driver's intention eliminates unnecessary shiftings that are present when the intention is overlooked. The optimum shifting habit and the best driving cycle in terms of minimum emissions and fuel consumption were proposed.展开更多
A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of...A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.展开更多
Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a h...Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output- pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.展开更多
To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR p...To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR proposed by NHTSA is based on the actual crash statistical data, which makes it difficult to evaluate for other vehicle categories newly introduced to the market, as they do not have sufficient crash statistics. A finite element (FE) methodology is proposed in this study based on computational reconstruction of crashes and some objective measures to predict the relative risk of DFR associated with any vehicle-to-vehicle crash. The suggested objective measures include the ratios of maximum intrusion in the passenger compartments of the vehicles in crash, and the transmitted peak deceleration of the vehicles’ center of gravity, which are identified as the main influencing parameters on occupant injury. The suitability of the proposed method is established for a range of bullet light truck and van (LTV) categories against a small target passenger car with published data by NHTSA. A mathematical relation between the objective measures and DFR is then developed. The methodology is then extended to predict the relative risk of DFR for a crossover category vehicle, a light pick-up truck, and a mid-size car in crash against a small size passenger car. It is observed that the ratio of intrusions produces a reasonable estimate for the DFR, and that it can be utilized in predicting the relative risk of fatality ratios in head-on collisions. The FE methodology proposed in this study can be utilized in design process of a vehicle to reduce the aggressivity of the vehicle and to increase the on-road fleet compatibility in order to reduce the occupant injury out- come.展开更多
Older drivers and younger drivers are affected differently both in summer and winter. Different factors affect each level of severity differently;some factors </span><span><span>affect a particular l...Older drivers and younger drivers are affected differently both in summer and winter. Different factors affect each level of severity differently;some factors </span><span><span>affect a particular level of injury severity differently from when the same factor is analyzed for another injury severity. The goal of this study is to identify the </span><span>factors that contribute to injury severity among older drivers (65+) and young </span><span>drivers (16</span></span><span> </span><span>-</span><span> </span><span><span>25) considering two seasons namely, summer and winter at intersections. Binary ordered probit models were used to develop four models to identify the contributing factors, two models for each season, namely winter and summer. A statistical t-test has been done to identify the statistically </span><span>significant variables @ 90% confidence interval. Based on the developed models, </span><span>in summer, three contributing factors, driving too fast condition, rear-end crashes, and followed too close are associated with younger drivers injury severity, while two contributing factors, rear-end crashes and followed too close are associated with older drivers injury severity. In winter, five factors</span></span><span>,</span><span><span> made an improper turn, E Failed to Yield Right-of-Way from Traffic Signal, rear </span><span>end (front to rear), gender like male and lighting condition like dark and dusk</span><span> light condition</span></span><span>,</span><span> are associated with younger drivers injury severity, while three factors such as made improper turn, rear-end crashes, and followed too close are associated with older drivers injury severity. Contributing factors in summer are the same for both younger and older drivers, but different in winter for both younger and older drivers. This indicates that older drivers and younger drivers are affected differently both in summer and winter.展开更多
基金Project(2018YFB1600600)supported by the National Key Research and Development Program,ChinaProject(20YJAZH083)supported by the Ministry of Education,China+1 种基金Project(20YJAZH083)supported by the Humanities and Social Sciences,ChinaProject(51878161)supported by the National Natural Science Foundation of China。
文摘The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.
基金Supported by the National Natural Science Foundation of China(50905018)
文摘Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and the fuel economy is compared among the different driver models. The different human-simulated characteristics of the driver models are emphatically analyzed. The analysis results indicate that the driver models based on PID, simple fuzzy logic and expert PID are corresponding to the handling characteristics of different drives. The driver models of different human-simulated characteristics bring the handling divergence of drivers with different driving level and habit to the HEV forward simulation, and that is significant to the all-around verification and validation of the control strategy for HEV. System simulation results of different driver models validate the impact of driver models to the dynamic and fuel economy performance of HEV.
基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)the K.C.Wong Magna Fund in Ningbo University,China.
文摘Based on the fact that the electronic throttle angle effect performs well in the traditional car following model,this paper attempts to introduce the electronic throttle angle into the smart driver model(SDM)as an acceleration feedback control term,and establish an extended smart driver model considering electronic throttle angle changes with memory(ETSDM).In order to show the practicability of the extended model,the next generation simulation(NGSIM)data was used to calibrate and evaluate the extended model and the smart driver model.The calibration results show that,compared with SDM,the simulation value based on the ETSDM is better fitted with the measured data,that is,the extended model can describe the actual traffic situation more accurately.Then,the linear stability analysis of ETSDM was carried out theoretically,and the stability condition was derived.In addition,numerical simulations were explored to show the influence of the electronic throttle angle changes with memory and the driver sensitivity on the stability of traffic flow.The numerical results show that the feedback control term of electronic throttle angle changes with memory can enhance the stability of traffic flow,which shows the feasibility and superiority of the proposed model to a certain extent.
文摘Osyris lanceolata is heavily and illegally exploited in East Africa for its essential oils, yet little is known about its population status and ecological requirements. This study examined its population structure and environmental factors influencing its distribution in the semi-arid Karamoja sub-region, Uganda. We surveyed 388 plots (5 m radius) at different altitudes, recording life stages, stem diameters, and regeneration patterns, and analyzed soil samples. Multivariate analyses, including Canonical Correspondence Analysis (CCA), Detrended Correspondence Analysis (DCA), Non-metric Multidimensional Scaling (NMDS), and Multiple Regression Modeling (MRM), identified key environmental factors affecting its distribution. Findings show that O. lanceolata populations in Moroto, Nakapiripirit, and Amudat districts are severely degraded due to overexploitation. The species is primarily regenerating through coppicing rather than seedlings, with an exploitation intensity of 56.6%. Population densities are low, distribution is irregular, and sustainable harvesting is not viable. Soil properties, particularly Ca2+, N, P, K+, Na+, and organic matter, significantly influence its abundance. Conservation efforts should focus on identifying suitable provenances for genetic preservation and plantation establishment. Areas with at least 9 trees per hectare in Moroto, Nakapiripirit, and Amudat could serve as potential sites for ex-situ plantations. Further research should explore how biotic interactions, genetic diversity, and morphology affect oil yield and quality to support restoration, breeding, and domestication initiatives.
文摘Human drivers seem to have different characteristics,so different drivers often yield different results from the same driving mode tests with identical vehicles and same chassis dynamometer.However,drivers with different experiences often yield similar results under the same driving conditions.If the features of human drivers are known,the control inputs to each driver,including warnings,will be customized to optimize each man–machine vehicle system.Therefore,it is crucial to determine how to characterize human drivers quantitatively.This study proposes a method to estimate the parameters of a theoretical model of human drivers.The method uses an artificial neural network(ANN)model and a numerical procedure to interpret the identified ANN models theoretically.Our approach involves the following process.First,we specify each ANN driver model through chassis dynamometer tests performed by each human driver and vehicle.Subsequently,we obtain the parameters of a theoretical driver model using the ANN model for the corresponding driver.Specifically,we simulate the driver’s behaviors using the identified ANN models with controlled inputs.Finally,we estimate the theoretical driver model parameters using the numerical simulation results.A proportional-integral-differential(PID)control model is used as the theoretical model.The results of the parameter estimation indicate that the PID driver model parameter combination can characterize human drivers.Moreover,the results suggest that vehicular factors influence the parameter combinations of human drivers.
文摘The introduction of automated driving systems raised questions about how the human driver interacts with the automated system. Non-cooperative game theory is increasingly used for modelling and understanding such interaction, while its counterpart, cooperative game theory is rarely discussed for similar applications despite it may be potentially more suitable. This paper describes the modelling of a human driver’s steering interaction with an automated steering system using cooperative game theory. The distributed Model Predictive Control approach is adopted to derive the driver’s and the automated steering system’s strategies in a Pareto equilibrium sense, namely their cooperative Pareto steering strategies. Two separate numerical studies are carried out to study the influence of strategy parameters, and the influence of strategy types on the driver’s and the automated system’s steering performance. It is found that when a driver interacts with an automated steering system using a cooperative Pareto steering strategy, the driver can improve his/her performance in following a target path through increasing his/her effort in pursuing his/her own interest under the driver-automation cooperative control goal. It is also found that a driver’s adoption of cooperative Pareto steering strategy leads to a reinforcement in the driver’s steering angle control, compared to the driver’s adoption of non-cooperative Nash strategy. This in turn enables the vehicle to return from a lane-change maneuver to straight-line driving swifter.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant No 10532060)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2008A610022 and 2007A610050)K. C. Wang Magna Fund in Ningbo University, China
文摘This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and difference-difference equation, respectively. The stability conditions for the two models are obtained by using the linear stability theory. The modified KdV equation near the critical point is derived to describe the traffic jam by using the reductive perturbation method, and the kink-antikink soliton solutions related to the traffic density waves are obtained. The results show that the drivers' delay in sensing headway plays an important role in jamming transition.
基金National Natural Science Foundation of China(Grant Nos.51675151,U1564201)Open Fund of the Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education(Grant No.GDSC202013).
文摘Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.
文摘The effects of different habits of the drivers on gear shifting strategies for manual powertrain were investigated. For the realization of simulation, the shifting habits of the drivers were conducted in the Advisor software to investigate and compare the emission rates. Simulation was developed based on the optimal gear shifting strategy and criteria and was validated both in fuel economy and emissions by analyzing the results in the various driving cycle and driving styles. To explore an optimal gear shifting strategy with best fuel economy and lowest emission for a manual transmission, a strategy was designed with a highest possible gear criterion as long as the torque requirement can be satisfied. Based on two different criteria, namely the engine working conditions and the driver's intention, the governing parameters in decision making for gear shifting of manual transmission in conventional engine were discussed. It is also shown that the optimum gear shifting strategy is based on that both the engine state and the driver's intention eliminates unnecessary shiftings that are present when the intention is overlooked. The optimum shifting habit and the best driving cycle in terms of minimum emissions and fuel consumption were proposed.
基金supported partly by National Natural Science Foundation of China(Nos.50637010,51077111)partly by the State Key Laboratory of Electrical Insulation and Power Equipment of Xi'an Jiaotong University of China(EIPE09207)
文摘A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.
基金supported by National Natural Science Foundation of China (Nos. 50637010, 51077111)the State Key Laboratory of Electrical Insulation and Power Equipment of Xi'an Jiaotong University of China (EIPE 09207)
文摘Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output- pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.
文摘To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR proposed by NHTSA is based on the actual crash statistical data, which makes it difficult to evaluate for other vehicle categories newly introduced to the market, as they do not have sufficient crash statistics. A finite element (FE) methodology is proposed in this study based on computational reconstruction of crashes and some objective measures to predict the relative risk of DFR associated with any vehicle-to-vehicle crash. The suggested objective measures include the ratios of maximum intrusion in the passenger compartments of the vehicles in crash, and the transmitted peak deceleration of the vehicles’ center of gravity, which are identified as the main influencing parameters on occupant injury. The suitability of the proposed method is established for a range of bullet light truck and van (LTV) categories against a small target passenger car with published data by NHTSA. A mathematical relation between the objective measures and DFR is then developed. The methodology is then extended to predict the relative risk of DFR for a crossover category vehicle, a light pick-up truck, and a mid-size car in crash against a small size passenger car. It is observed that the ratio of intrusions produces a reasonable estimate for the DFR, and that it can be utilized in predicting the relative risk of fatality ratios in head-on collisions. The FE methodology proposed in this study can be utilized in design process of a vehicle to reduce the aggressivity of the vehicle and to increase the on-road fleet compatibility in order to reduce the occupant injury out- come.
文摘Older drivers and younger drivers are affected differently both in summer and winter. Different factors affect each level of severity differently;some factors </span><span><span>affect a particular level of injury severity differently from when the same factor is analyzed for another injury severity. The goal of this study is to identify the </span><span>factors that contribute to injury severity among older drivers (65+) and young </span><span>drivers (16</span></span><span> </span><span>-</span><span> </span><span><span>25) considering two seasons namely, summer and winter at intersections. Binary ordered probit models were used to develop four models to identify the contributing factors, two models for each season, namely winter and summer. A statistical t-test has been done to identify the statistically </span><span>significant variables @ 90% confidence interval. Based on the developed models, </span><span>in summer, three contributing factors, driving too fast condition, rear-end crashes, and followed too close are associated with younger drivers injury severity, while two contributing factors, rear-end crashes and followed too close are associated with older drivers injury severity. In winter, five factors</span></span><span>,</span><span><span> made an improper turn, E Failed to Yield Right-of-Way from Traffic Signal, rear </span><span>end (front to rear), gender like male and lighting condition like dark and dusk</span><span> light condition</span></span><span>,</span><span> are associated with younger drivers injury severity, while three factors such as made improper turn, rear-end crashes, and followed too close are associated with older drivers injury severity. Contributing factors in summer are the same for both younger and older drivers, but different in winter for both younger and older drivers. This indicates that older drivers and younger drivers are affected differently both in summer and winter.