期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Fine-Grained Defect Prediction Method Based on Drift-Immune Graph Neural Networks
1
作者 Fengyu Yang Fa Zhong +1 位作者 Xiaohui Wei Guangdong Zeng 《Computers, Materials & Continua》 2025年第2期3563-3590,共28页
The primary goal of software defect prediction (SDP) is to pinpoint code modules that are likely to contain defects, thereby enabling software quality assurance teams to strategically allocate their resources and manp... The primary goal of software defect prediction (SDP) is to pinpoint code modules that are likely to contain defects, thereby enabling software quality assurance teams to strategically allocate their resources and manpower. Within-project defect prediction (WPDP) is a widely used method in SDP. Despite various improvements, current methods still face challenges such as coarse-grained prediction and ineffective handling of data drift due to differences in project distribution. To address these issues, we propose a fine-grained SDP method called DIDP (drift-immune defect prediction), based on drift-immune graph neural networks (DI-GNN). DIDP converts source code into graph representations and uses DI-GNN to mitigate data drift at the model level. It also analyses key statements leading to file defects for a more detailed SDP approach. We evaluated the performance of DIDP in WPDP by examining its file-level and statement-level accuracy compared to state-of-the-art methods, and by examining its cross-project prediction accuracy. The results of the experiment show that DIDP showed significant improvements in F1-score and Recall@Top20%LOC compared to existing methods, even with large software version changes. DIDP also performed well in cross-project SDP. Our study demonstrates that DIDP achieves impressive prediction results in WPDP, effectively mitigating data drift and accurately predicting defective files. Additionally, DIDP can rank the risk of statements in defective files, aiding developers and testers in identifying potential code issues. 展开更多
关键词 Software defect prediction data drift graph neural networks information bottleneck
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部