Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, ...Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference.展开更多
This paper experimentally studied the features of air-water flow during the emptying of a water-filled prismatic tank with a bottom orifice under different conditions.The experiments were conducted with both circular ...This paper experimentally studied the features of air-water flow during the emptying of a water-filled prismatic tank with a bottom orifice under different conditions.The experiments were conducted with both circular and elliptical orifices,with and without ventilation.The evolution of bubbles,water pressure variation,and water level change with time were recorded in the experiments and analyzed.Based on the results,the evolution of bubbles could be mainly divided into three stages of formation,deformation,and decomposition.Ventilation was found important to the emptying process,with which the drainage efficiency was much higher than that under the unventilated condition.Additionally,under the unventilated condition,the drainage efficiency with the circular orifice was slightly higher than that with the elliptical orifice.展开更多
Greenhouse gas emissions,nitrogen and phosphorous losses through ammonia volatilization,leaching and surface drainage from rice paddy under efficient irrigation and drainage were analyzed based on field experimental d...Greenhouse gas emissions,nitrogen and phosphorous losses through ammonia volatilization,leaching and surface drainage from rice paddy under efficient irrigation and drainage were analyzed based on field experimental data in order to reveal the eco-environmental impacts of efficient irrigation and drainage on rice paddy.The results showed that total methane emission from rice paddy under the controlled irrigation was reduced by more than 80% and total nitrous oxide emission increased by 15.9% compared with flooding irrigation.Seasonal comprehensive global warming potentials(GWP) of methane and nitrous oxide were 62.23 gCO2 m-2 for rice paddy under the controlled irrigation,reduced by 68.0% compared with flooding irrigation.Due to large reduction in seepage and surface drainages,nitrogen and phosphorous losses through leaching were reduced by 40.1% and 54.8%,nitrogen and phosphorous losses through surface drainage were reduced by 53.9% and 51.6% from rice paddy under efficient irrigation and drainage compared with traditional irrigation and drainage.Nitrogen loss through ammonia volatilization was reduced by 14.0%.Efficient irrigation and drainage management is helpful to mitigate greenhouse gases emission,nitrogen and phosphorus losses and their pollution on groundwater and surface water.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51409124)the Natural Science Foundation of Jiangsu Province(Grant No.BK20140564)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2013490711)
文摘Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference.
基金The writers gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities(2020QNA4017).
文摘This paper experimentally studied the features of air-water flow during the emptying of a water-filled prismatic tank with a bottom orifice under different conditions.The experiments were conducted with both circular and elliptical orifices,with and without ventilation.The evolution of bubbles,water pressure variation,and water level change with time were recorded in the experiments and analyzed.Based on the results,the evolution of bubbles could be mainly divided into three stages of formation,deformation,and decomposition.Ventilation was found important to the emptying process,with which the drainage efficiency was much higher than that under the unventilated condition.Additionally,under the unventilated condition,the drainage efficiency with the circular orifice was slightly higher than that with the elliptical orifice.
基金supported by the National Natural Science Foundation of China (Grant Nos 50839002 and 50809022)the National Key Tech-nologies R & D Program of China during the 11th Fiveyear Plan Period (Grant No 2006BAD11B09)
文摘Greenhouse gas emissions,nitrogen and phosphorous losses through ammonia volatilization,leaching and surface drainage from rice paddy under efficient irrigation and drainage were analyzed based on field experimental data in order to reveal the eco-environmental impacts of efficient irrigation and drainage on rice paddy.The results showed that total methane emission from rice paddy under the controlled irrigation was reduced by more than 80% and total nitrous oxide emission increased by 15.9% compared with flooding irrigation.Seasonal comprehensive global warming potentials(GWP) of methane and nitrous oxide were 62.23 gCO2 m-2 for rice paddy under the controlled irrigation,reduced by 68.0% compared with flooding irrigation.Due to large reduction in seepage and surface drainages,nitrogen and phosphorous losses through leaching were reduced by 40.1% and 54.8%,nitrogen and phosphorous losses through surface drainage were reduced by 53.9% and 51.6% from rice paddy under efficient irrigation and drainage compared with traditional irrigation and drainage.Nitrogen loss through ammonia volatilization was reduced by 14.0%.Efficient irrigation and drainage management is helpful to mitigate greenhouse gases emission,nitrogen and phosphorus losses and their pollution on groundwater and surface water.