期刊文献+
共找到744篇文章
< 1 2 38 >
每页显示 20 50 100
CFD Simulation of Passenger Car Aerodynamics and Body Parameter Optimization
1
作者 Jichao Li Xuexin Zhu +2 位作者 Cong Zhang Shiwang Dang Guang Chen 《Fluid Dynamics & Materials Processing》 2025年第9期2305-2329,共25页
The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle... The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector. 展开更多
关键词 Automotive aerodynamic characteristics flow field aerodynamic drag drag reduction optimization CFD(computational fluid dynamics)
在线阅读 下载PDF
Dolphin-Inspired Skin Microvibrations Offer a Novel Pressure-Dominated Drag Reduction Mechanism
2
作者 Dongyue Wang Hao Liu 《Journal of Bionic Engineering》 2025年第2期793-804,共12页
The cutaneous ridges on dolphin skin have long been believed to effectively reduce friction drag, thereby contributing to overall drag reduction. However, since these skin ridges are oriented perpendicular to the swim... The cutaneous ridges on dolphin skin have long been believed to effectively reduce friction drag, thereby contributing to overall drag reduction. However, since these skin ridges are oriented perpendicular to the swimming direction, they also generate additional pressure drag, raising questions about the impact of the shape-induced pressure forces on swimming. Inspired by the microvibrations observed on dolphin skin, we hypothesize that the microstructure on dolphin skin is not static but dynamically oscillates in the form of Longitudinal Micro-Ultrasonic Waves (LMUWs). To explore this, we carried out a series of Computational Fluid Dynamics (CFD) simulations based on Large Eddy Simulation (LES) model to investigate the impact of pressure drag on the total drag acting on an oscillating skin surface under realistic turbulent flow conditions. The results indicate that the dynamic skin oscillations induce a new dynamic Stokes boundary layer, which has the potential to convert pressure drag into a negative force, thereby reducing total drag under the influence of traveling LMUW excitations. Furthermore, a relative velocity ξ, defined as the difference between the wave speed c and the external flow speed U, is introduced to evaluate the drag-reduction effect dominated by pressure. The findings reveal that pressure drag remains negative when ξ > 0. As ξ increases, the thrust effect induced by negative pressure becomes increasingly significant, ultimately counteracting friction drag and eliminating total drag. This pressure-dominated drag reduction mechanism thus demonstrates a novel strategy for the drag reduction technology and the potential of unveiling the mysteries behind dolphin swimming. 展开更多
关键词 Pressure drag Drag reduction Dynamic skin oscillation Dolphin swimming Large Eddy Simulation(LES)
在线阅读 下载PDF
Research and experimental analysis on precision degradation of BSM at low speed(II):experimental analysis
3
作者 KONG Deshun LYU Linbao +1 位作者 DUAN Xiaojun GAO Xiangsheng 《High Technology Letters》 2025年第3期273-279,共7页
The dynamic model of the ball screw mechanism(BSM)in spatial motion,developed in Part I of the study titled‘research and experimental analysis on precision degradation of BSM at low speed’,has been validated through... The dynamic model of the ball screw mechanism(BSM)in spatial motion,developed in Part I of the study titled‘research and experimental analysis on precision degradation of BSM at low speed’,has been validated through a comparison between calculated values and experimentally measured data obtained from a comprehensive ball-screw test bench.In order to study the perform-ance parameters related to the precision degradation characteristics of ball screw under different pre-loads and speeds,the precision degradation test bench for ball screw is set up.Through the experi-ment on the ball-screw comprehensive test bench,the drag torque,stroke deviation,acceleration peak value,axial contact stiffness and other parameters of the BSM under different speeds are ob-tained,and the different preloads are obtained by the drag torque,the changing regularity of which is consistent with the simulation results.A comprehensive analysis of the experimental data reveals that the dynamic characteristics of the ball screw’s spatial motion are significantly influenced by gy-roscopic torque effects.By incorporating these parametric effects,the accuracy degradation charac-teristics of ball screw under different preloads and speeds can be well analyzed.This methodology establishes a technical foundation for investigating ball screw accuracy retention characteristics. 展开更多
关键词 ball-screw mechanism dynamics model test bench precision degradation drag torque
在线阅读 下载PDF
A method for optimizing and controlling rocking drillstringe-assisted slide drilling
4
作者 Yabin Zhang Jian Lu +2 位作者 Binfeng Guo Xueying Wang Feifei Zhang 《Natural Gas Industry B》 2025年第1期77-87,共11页
Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,... Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,limiting the widespread use of this technology.In this study,the influence of rocking parameters on the friction-reduction effect was investigated using an axialetorsional dynamic model of the drillstring and an experimental apparatus for rocking-assisted slide drilling in a simulated horizontal well.The research shows that increasing the rocking speed is beneficial improving the friction-reduction effect,but there is a diminishing marginal effect.A method was proposed to optimize the rocking speed using the equivalent axial drag coefficienterocking speed curve.Under the influence of rocking,the downhole weight on bit(WOB)exhibits a sinusoidal-like variation,with the predominant frequency being twice the rocking frequency.The fluctuation amplitude of the WOB in the horizontal section has a linear relationship with the rocking-affected depth.Based on this,a method was proposed to estimate the rockingaffected depth using the fluctuation amplitude of the standpipe pressure difference.Application of this method in the drilling field has improved the rate of penetration and toolface stability,demonstrating the reliability and effectiveness of the methods proposed in this paper. 展开更多
关键词 Rocking drillstring Slide drilling Drag reduction Drillstring mechanics Rocking parameter optimization
在线阅读 下载PDF
Consideration of Aspect Ratios on Flow Around Wall-mounted Square Cylinders
5
作者 Ilker Goktepeli 《哈尔滨工程大学学报(英文版)》 2025年第3期492-502,共11页
Flow characteristics around a wall-mounted square cylinder have been numerically simulated at aspect ratios (AR) ranging from 4 to 7 at Re =10 000. Four turbulence models have been compared in terms of drag coefficien... Flow characteristics around a wall-mounted square cylinder have been numerically simulated at aspect ratios (AR) ranging from 4 to 7 at Re =10 000. Four turbulence models have been compared in terms of drag coefficient (C_D). The closest result has been provided by two turbulence models, namely, k-ε Realizable and k ?ω Shear Stress Transport (SST). Hence, these models were utilized to present the flow patterns of pressure distributions, turbulent kinetic energy values, velocity magnitude values with streamlines, streamwise velocity components, crossstream velocity components and spanwise velocity components on different planes. Flow stagnation has been attained in front of the cylinder. Pressure values peaked for the upstream region. Over the cylinders, the tip vortex structure was dominant owing to the influence of the free end. Flow separation from the top front edge of the body has been obtained. The dividing streamline affected by the flow separation was highly effective in the wake region and moved nearer to the body when the aspect ratio was decreased;the reason was the wake shrinkage owing to the decreasing aspect ratio. Upwash and downwash have been seen in the cylinder wake. These two models presented similar flow patterns and drag coefficients. These drag coefficients are in good agreement with those in previous studies. 展开更多
关键词 Aspect ratio Drag coefficient Reynolds number Turbulence model Wall-mounted square cylinder
在线阅读 下载PDF
Two-Dimensional Numerical Study on the Flow Past Two Staggered Cylinders in a Channel
6
作者 Zenan Lai Deming Nie 《Fluid Dynamics & Materials Processing》 2025年第9期2131-2148,共18页
The lattice Boltzmann method(LBM)is employed to simulate flow around two staggered cylinders within a confined channel.The numerical model is validated against existing experimental data by comparing drag coefficients... The lattice Boltzmann method(LBM)is employed to simulate flow around two staggered cylinders within a confined channel.The numerical model is validated against existing experimental data by comparing drag coefficients and Strouhal numbers in the single-cylinder configuration.The study systematically investigates the influence of vertical(h)and horizontal(l)spacing between the cylinders,as well as the Reynolds number(Re=0.1–160),on the hydrodynamic forces,streamline patterns,and vortex dynamics.Results indicate that reducing the horizontal spacing l suppresses flow separation behind the upstream cylinder,while either excessively small or large vertical spacing h diminishes separation in the downstream cylinder.The onset of periodic vortex shedding is delayed due to inter-cylinder interactions,with the critical Reynolds number increasing to Rec=71–112,significantly higher than that of a single-cylinder case(Re_(c)≈69).During the vortex shedding regime,the downstream cylinder exhibits a greater lift force fluctuation compared to the upstream cylinder.At Re=160,the root-mean-square lift coefficient(C′_(L))ranges from approximately 0.17 to 0.56 for the downstream cylinder,and from 0.018 to 0.4 for the upstream one.The shedding frequency,characterized by the Strouhal number(St),increases with Reynolds number,reaching St=0.12–0.18 at Re=160.Variations in h and l significantly influence St,with a decrease in l or an increase in h lowering the shedding frequency—this effect is more pronounced in the horizontal direction. 展开更多
关键词 Lattice Boltzmann method staggered cylinders Strouhal number drag coefficient
在线阅读 下载PDF
Numerical investigation on transonic flutter characteristics of an airfoil with split drag rudder
7
作者 Yongchang Li Yuting Dai +2 位作者 Chen Song Chao Yang Guangjing Huang 《Theoretical & Applied Mechanics Letters》 2025年第1期87-97,共11页
In this paper,a series of flutter simulations are carried out to investigate the effects of split drag rudder(SDR)on the transonic flutter characteristic of rigid NACA 64A010.A structural dynamic model addressing two-... In this paper,a series of flutter simulations are carried out to investigate the effects of split drag rudder(SDR)on the transonic flutter characteristic of rigid NACA 64A010.A structural dynamic model addressing two-degree-of-freedom pitch-plunge aeroelastic oscillations was coupled with the unsteady Reynolds-averaged Navier-Stokes equations to perform flutter simulation.Meanwhile,the influence mechanism of SDR on flutter boundary is explained through aerodynamic work and the correlated shock wave location.The results show that the SDR delays the shock wave shifting downstream,and the Mach number corresponding to reaching freeze region increases as the split angle increases.Therefore,the peak value of aerodynamic moment coefficient amplitude and the sharp ascent process of phase occurs at higher Mach number,which leads to the delay in the occurrence of the transonic dip.Besides,before the transonic dip of airfoil without SDR occurs,the aerodynamic moment phase of airfoil with the SDR decreases slowly due to the decrease in the speed of shock wave moving downstream.This results in an increased flutter speed when employing the SDR before the transonic dip of airfoil without SDR occurs.Meanwhile,the effects of asymmetric split angles on the transonic flutter characteristics are also investigated.Before the transonic dip of airfoil without SDR occurs,the flutter characteristic is dominated by the smaller split angle. 展开更多
关键词 Transonic flutter Energy map Shock wave Split drag rudder
在线阅读 下载PDF
Azimuthally-distributed wavy inner wall treatment for high subsonic jet noise control
8
作者 Zhenyu NIU Shang WANG +2 位作者 Xiaoquan YANG Xiaolong TANG Peifeng WENG 《Chinese Journal of Aeronautics》 2025年第3期413-434,共22页
The noise generated by subsonic jet nozzles, commonly encountered in civilian aircraft, is rather significant and propagates in both the upstream and downstream directions due to large-scale and fine-scale turbulence ... The noise generated by subsonic jet nozzles, commonly encountered in civilian aircraft, is rather significant and propagates in both the upstream and downstream directions due to large-scale and fine-scale turbulence structures. In this paper, a distinctive inner wall treatment strategy, denoted as the Azimuthally-distributed Wavy Inner Wall (AWIW), is proposed, which is aimed at mitigating jet noise. Within this strategy, a circumferentially dispersed treatment wall characterized by a minute wavy pattern is substituted for the smooth inner wall in proximity to the nozzle outlet. To assess the effectiveness of the AWIW treatment, we conducted numerical simulations. The unsteady flow field and far-field noise were predicted by employing Large Eddy Simulations (LES) coupled with the Ffowcs Williams and Hawkings (FW-H) integration method. To gain a comprehensive understanding of the mechanism underlying the noise reduction facilitated by the AWIW treatment, it examined physical parameters such as the Lighthill source acoustic source term, the turbulent kinetic energy acoustic source term, and the shear layer instability. The results reveal that the AWIW treatment expedites the instability within the shear layer of the jet, leading to an early disruption of the jet shear layer, and consequently turbulent structures in varying sizes are generated downstream. This process effectively regulates the generation and emission of jet noise. By controlling the minor scale turbulence through the AWIW treatment, the mid- and high-frequency noise within the distant field can be significantly reduced. In the context of the flow field, the introduction of AWIW also leads to a decrease in drag on the inner wall surface of the jet, thereby improving the overall aerodynamic performance of the nozzle. Considering these attributes, the AWIW strategy emerges as a viable technique for the reduction of jet noise. 展开更多
关键词 Jet noise Azimuthally-dis tributed wavy inner wall Jet noise control Large eddy simulation Drag reduction
原文传递
Experimental and Computational Studies on a Cylinder with Continuous and Discrete Strakes
9
作者 Subramanian Sarvalogapathi Kumar Narendran Rajamanickam Panneer Selvam 《哈尔滨工程大学学报(英文版)》 2025年第5期947-958,共12页
Cylindrical cross sections are critical components in offshore structures, including jacket platform legs, pipelines, mooring lines, and risers. Thesecylindrical structures are subjected to vortex-induced vibrations (... Cylindrical cross sections are critical components in offshore structures, including jacket platform legs, pipelines, mooring lines, and risers. Thesecylindrical structures are subjected to vortex-induced vibrations (VIV) due to strong ocean currents, where vortices generated during fluid flowresult in significant vibrations in crossflow and in-flow directions. Such vibrations can lead to severe damage to platforms, cables, and risersystems. Consequently, mitigating VIV caused by vortex-induced forces is important. This study investigates the hydrodynamic performance offive strake models relative to a bare cylinder at moderate Reynolds numbers. The models encompass one conventional continuous helical strake(HS) and four helical discrete strake (HDS) with varying segment spacing between the fins. The hydrodynamic performance, specifically liftand drag force coefficients, was computed using a Reynolds averaged Navier –Stokes-based CFD solver and validated with experimentalmeasurements. The conventional HS suppresses 95% of the lift force but increases the drag force by up to a maximum of 48% in measurements.The HDS suppress the lift force by 70%–88% and increase the drag force by 15%–30%, which is less than the increase observed with the HS.Flow visualization showed that HS and HDS cylinders mitigate vortex-induced forces by altering the vortex-shedding pattern along the length ofthe cylinder. The HDS achieves a reduction in drag compared with the conventional continuous HS. The segment spacing is found to significantlyimpact the reduction in vortex-induced forces. 展开更多
关键词 CFD Continuous helical strakes Drag force measurements Helical discrete strakes RMS lift force coefficient Segment spacing Strouhal number Vortex-induced forces
在线阅读 下载PDF
Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator
10
作者 Borui Zheng Shaojie Qi +3 位作者 Minghao Yu Jianbo Zhang Linwu Wang Dongliang Bian 《Chinese Physics B》 2025年第2期362-370,共9页
The primary objective in aircraft transportation is to minimize turbulent drag, thereby conserving energy and reducing emissions. We propose a sector-shaped counter-flow dielectric barrier discharge plasma actuator, w... The primary objective in aircraft transportation is to minimize turbulent drag, thereby conserving energy and reducing emissions. We propose a sector-shaped counter-flow dielectric barrier discharge plasma actuator, which leverages jet synthesis for drag reduction. A drag control experiment was conducted in a low-speed wind tunnel with a controlled flow velocity of 9.6 m/s(Re = 1.445 × 10^(4)). This study investigated the effects of varying pulse frequencies and actuation voltages on the turbulent boundary layer. Using a hot-wire measurement system, we analyzed the pulsating and time-averaged velocity distributions within the boundary layer to evaluate the streamwise turbulent drag reduction. The results show that the local TDR decreases as the pulse frequency increases, reaching a maximum reduction of approximately 20.97% at a pulse frequency of 50 Hz. In addition, as the actuation voltage increases, the friction coefficient decreases, increasing the drag reduction rate. The maximum drag reduction of approximately 33.34% is achieved at an actuation voltage of 10 kV. 展开更多
关键词 plasma flow control turbulent boundary layer turbulent drag reduction
原文传递
A Comparative Study on Hydrodynamic Optimization Approaches for AUV Design Using CFD
11
作者 KL Vasudev Manish Pandey Jaan H.Pu 《Fluid Dynamics & Materials Processing》 2025年第7期1545-1569,共25页
This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully i... This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively. 展开更多
关键词 Lift-to-drag ratio delivered power hydrodynamic drag autonomous underwater vehicle/glider(AUV/G) genetic algorithm(GA) computational fluid dynamics(CFD)
在线阅读 下载PDF
Widefield optical coherence tomography of foveal dragging in retinopathy of prematurity 被引量:1
12
作者 Victor M.Villegas Stephen G.Schwartz +2 位作者 Audina M.Berrocal Timothy G.Murray Harry W.Flynn Jr. 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第7期1219-1223,共5页
Dear Editor,Despite substantial advances in neonatal medicine,retinopathy of prematurity(ROP)continues to be a serious therapeutic challenge⑴.Visual acuity loss in patients with ROP has been associated with structura... Dear Editor,Despite substantial advances in neonatal medicine,retinopathy of prematurity(ROP)continues to be a serious therapeutic challenge⑴.Visual acuity loss in patients with ROP has been associated with structural retinal abnormalities(including retinal detachment,retinal folds,and pigmentary retinopathy),cataract,glaucoma,and amblyopia due to refractive error or strabismus[2]. 展开更多
关键词 RETINOPATHY of prematurity(ROP) foveal dragging structural RETINAL ABNORMALITIES
原文传递
Measuring the dragging effect of natural resources: Evidence from the Yangtze River Delta metropolitan areas 被引量:2
13
作者 ZHAO Cai-jing WU Yu-ming 《Ecological Economy》 2015年第3期210-215,共6页
This paper extends the resource drag studies by empirically investigating how spatial factors affect the regional economic growth. Using spatial panel econometric models, this paper estimates the dragging effect of en... This paper extends the resource drag studies by empirically investigating how spatial factors affect the regional economic growth. Using spatial panel econometric models, this paper estimates the dragging effect of energy resources of the Yangtze River Delta metropolitan areas. We fi nd that the growth drag of energy in the Yangtze River Delta is about 6% on average, which means that energy constraints decrease the economic growth by 6% annually, higher than the national level that has been previously measured in the literature. This result has taken into account the impact of neighboring cities' economic development, so as to obtain a more accurate estimate. Based on these measurement results, we propose some policy recommendations. 展开更多
关键词 ECONOMIC growth dragging EFFECT SPATIAL econometri
原文传递
Fresnel Dragging Explained by a Classical Model of Light Transmission in Optical Media 被引量:1
14
作者 Declan Traill 《Journal of Applied Mathematics and Physics》 2021年第8期1883-1889,共7页
The original mathematical treatment used in the analysis of the Fizeau experiment of 1851, which measured the relative speed of light in a moving medium, assumes that light travels through the water in a smooth contin... The original mathematical treatment used in the analysis of the Fizeau experiment of 1851, which measured the relative speed of light in a moving medium, assumes that light travels through the water in a smooth continuous flow, at a speed less than the speed of light in a vacuum (relative to the water). Thus, it assumes that the water’s velocity vector can simply be added to that of the light. However, light is transmitted through optical media, such as water, by a continuous process of charge excitation (semi-absorption) and re-emission by the water molecules;but travels between them at the full speed of light (in a vacuum). Thus, the mathematics describing the process of Fresnel dragging must be formulated differently and can then be explained by classical physics, allowing the entire process to be fully visualized. 展开更多
关键词 FRESNEL dragging Optical Fizeau ABSORPTION Emission DELAY Refrac-tive Index RELATIVITY CLASSICAL Physics
在线阅读 下载PDF
Surface Plasmon Polariton Fizeaus Dragging: via Relative Rotational Sensing
15
作者 Bilal Shoaib Muhammad Haneef +1 位作者 Humayun Khan Bakhtawar 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第4期435-440,共6页
A new scheme focusing on the surface plasmon polariton interferometry between the metal and dielectric interface is introduced. The phase shift is measured by using surface plasmon polariton wave, generated at the int... A new scheme focusing on the surface plasmon polariton interferometry between the metal and dielectric interface is introduced. The phase shift is measured by using surface plasmon polariton wave, generated at the interface of metallic and dielectric media. The phase shift of SPPs is modi?ed under phase and amplitude control of complex conductivity for interferometry. The control ?elds strongly in?uence the phase shift of SPPs for detection of molecular motion. The phase shift of SPPs is further modi?ed by Plasmon polariton Fizeaus dragging effect. We measure 20%–25%fractional change in delay and their phases shift between two left and right SPPs modes. Our results may have signi?cant applications in sensor interferometer technology. 展开更多
关键词 SURFACE PLASMON POLARITON Fizeaus dragging
原文传递
Covariant Anomaly and Hawking Radiation from Kerr-Newman Black Hole in Dragging Coordinates Frame
16
作者 LIU Xiong-Wei ZENG Xiao-Xiong CHEN Shi-Wu LIN Kai YANG Shu-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第8期541-544,共4页
In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend ... In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend the work to Kerr-Newman black hole in dragging coordinates frame.It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame,which supports and extends Robinson and Wilczek's opinion. 展开更多
关键词 Hawking radiation ANOMALY dragging coordinates frame Kerr-Newman black hole
在线阅读 下载PDF
Frame Dragging Effect on Properties of Rotating Neutron Stars with Strong Magnetic Field
17
作者 GUO Yu-Wu WEN De-Hua HU Jian-Xun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1469-1472,共4页
The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to th... The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration. 展开更多
关键词 rotating neutron star frame dragging effect moment of inertia magnetic field
在线阅读 下载PDF
Frame dragging in the field of Kerr family
18
作者 何唐梅 王永久 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期232-234,共3页
The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a stra... The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a straightforward mathematical method. 展开更多
关键词 frame dragging general relativity uncharged test particle
原文传递
Observations of the Sun’s Dragging Forces
19
作者 Jose L. Parra 《Journal of Applied Mathematics and Physics》 2020年第4期643-651,共9页
The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done i... The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done in the last 60 years has shown experimental evidence that the reality may be somehow more complex. That complexity was confirmed by the author of this paper and he goes farther announcing that the Sun is emitting particles with 44 m spatial periodicity that creates isotropic gravitational effects. Those effects are identical to the ones produced by dragging forces according to the General Theory of Relativity under the Kerr’s Metric. The purpose of this paper is to introduce experimental evidence confirming the author’s predictions that the Moon can modify the dragging force coming from the Sun’s core. 展开更多
关键词 GRAVITY Universal GRAVITATIONAL Constant DIFFRACTION Interference dragging FORCES
在线阅读 下载PDF
Numerical investigation on the aerodynamic drag reduction based on bottom deflectors and streamlined bogies of a high-speed train 被引量:1
20
作者 JIANG Chen LONG jn-lan +2 位作者 LI Yan-ong GAO Guang-jun FRANKLIN Eze 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3312-3328,共17页
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th... The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-εturbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains. 展开更多
关键词 high-speed train numerical simulation drag reduction DEFLECTOR streamlined design
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部