In modern architectural design,as complexity increases and diverse demands emerge,reconstructing 3D spaces has become a crucial method.However,existing methods remain limited to small-scale scenarios and exhibit poor ...In modern architectural design,as complexity increases and diverse demands emerge,reconstructing 3D spaces has become a crucial method.However,existing methods remain limited to small-scale scenarios and exhibit poor reconstruction accuracy when applied to building-scale environments,resulting in unstable mesh quality and reduced design productivity.Furthermore,the lack of real-time,interactive editing tools prolongs design iteration cycles and impedes workflow efficiency.To address this issue,we propose the following contributions:(1)We construct ArchiNet++,an architectural dataset that includes 710,180 multi-view images,5200 SketchUp models,and corresponding camera parameters from the conceptual design phase of architectural projects.(2)We introduce Drag2Build++,an interactive 3D mesh reconstruction framework featuring drag-based editing and three core innovations:a differentiable geometry module for fine-grained deformation,a 2D-3D rendering bridge for supervision,and a GAN-based refinement module for photorealistic texture synthesis.(3)Comprehensive experiments demonstrate that our model excels in generating highquality 3D meshes and enables rapid mesh editing via drag-based interactions.Furthermore,by incorporating textured mesh generation into this interactive workflow,it improves both efficiency and modeling flexibility.We hope this combination can contribute to a more intuitive modeling process and offer a practical tool set that supports the digital transformation efforts within architectural design.展开更多
Fish pectoral fin movement involves primarily a drag-based and a lift-based mechanisms to produce thrust. A numerical study on a pectoral fin rowing propulsion model based on the drag-based mechanism is presented in t...Fish pectoral fin movement involves primarily a drag-based and a lift-based mechanisms to produce thrust. A numerical study on a pectoral fin rowing propulsion model based on the drag-based mechanism is presented in this article. The propulsive mechanism of the pectoral fin rowing model is related with the voriticity and pressure in the flow field. The relationship between the thrust and kinematic parameters and the wake-captured problem are analyzed. It is shown that a high thrust is produced in the power stroke, mainly due to the backward translation acceleration, the anticlockwise angular acceleration and the absence of stall in the uniform translation. Moreover, the flow control mechanism and the effect of dynamic flexible deformation are further analyzed. To properly choose controllable factors and adopt an appropriate dynamic deformation can improve the propulsive performance.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(2024A1515012595)the Department of Education of Guangdong Province(2023ZDZX4078)Shenzhen Science and Technology Innovation Committee(WDZC20231129201240001).
文摘In modern architectural design,as complexity increases and diverse demands emerge,reconstructing 3D spaces has become a crucial method.However,existing methods remain limited to small-scale scenarios and exhibit poor reconstruction accuracy when applied to building-scale environments,resulting in unstable mesh quality and reduced design productivity.Furthermore,the lack of real-time,interactive editing tools prolongs design iteration cycles and impedes workflow efficiency.To address this issue,we propose the following contributions:(1)We construct ArchiNet++,an architectural dataset that includes 710,180 multi-view images,5200 SketchUp models,and corresponding camera parameters from the conceptual design phase of architectural projects.(2)We introduce Drag2Build++,an interactive 3D mesh reconstruction framework featuring drag-based editing and three core innovations:a differentiable geometry module for fine-grained deformation,a 2D-3D rendering bridge for supervision,and a GAN-based refinement module for photorealistic texture synthesis.(3)Comprehensive experiments demonstrate that our model excels in generating highquality 3D meshes and enables rapid mesh editing via drag-based interactions.Furthermore,by incorporating textured mesh generation into this interactive workflow,it improves both efficiency and modeling flexibility.We hope this combination can contribute to a more intuitive modeling process and offer a practical tool set that supports the digital transformation efforts within architectural design.
基金supported by the National Natural Science Foundation of China (Grant No. 10502033)the Shanghai Leading Academic Discipline Project (Grant No. B206)
文摘Fish pectoral fin movement involves primarily a drag-based and a lift-based mechanisms to produce thrust. A numerical study on a pectoral fin rowing propulsion model based on the drag-based mechanism is presented in this article. The propulsive mechanism of the pectoral fin rowing model is related with the voriticity and pressure in the flow field. The relationship between the thrust and kinematic parameters and the wake-captured problem are analyzed. It is shown that a high thrust is produced in the power stroke, mainly due to the backward translation acceleration, the anticlockwise angular acceleration and the absence of stall in the uniform translation. Moreover, the flow control mechanism and the effect of dynamic flexible deformation are further analyzed. To properly choose controllable factors and adopt an appropriate dynamic deformation can improve the propulsive performance.