The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle...The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.展开更多
基金funded by the“Hundred Outstanding Talents”Support Program of Jining University,a provincial-level key project in the field of natural sciences,grant number 2023ZYRC23Jining Key R&D Program(Soft Science)Project,No.2024JNZC010Shandong Province Key Research and Development Program(Technology-Based Small and Medium-sized Enterprises Innovation Capability Improvement)Project No.2025TSGCCZZB0679.
文摘The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.