Industrial-scale experiments were conducted to study the effects of tertiary air declination angle(TDA)on the coal combustion and steam temperature characteristics in the first 350-MW supercritical down-fired boiler i...Industrial-scale experiments were conducted to study the effects of tertiary air declination angle(TDA)on the coal combustion and steam temperature characteristics in the first 350-MW supercritical down-fired boiler in China with the multiple-injection and multiple-staging combustion(MIMSC)technology at medium and high loads.The experimental results indicated that as the TDA increased from 0°to 15°,the overall gas temperature in the lower furnace rose and the symmetry of temperature field was enhanced.The ignition distance of the fuel-rich coal/air flow decreased.In near-burner region,the concentration of O2 decreased while the concentrations of CO and NO increased.The concentration of NO decreased in near-tertiary-air region.The carbon in fly ash decreased significantly from 8.40%to 6.45%at a load of 260 MW.At a TDA of 15°,the ignition distances were the shortest(2.07 m and 1.73 m)at a load of 210 MW and 260 MW,respectively.The main and reheat steam temperatures were the highest(557.2℃ and 559.4℃ at a load of 210 MW,558.4℃ and 560.3℃ at a load of 260 MW).The carbon in fly ash was the lowest(4.83%)at a load of 210 MW.On changing the TDA from 15°to 25°,the flame kernel was found to move downward and the main and reheat steam temperatures dropped obviously.The change of TDA has little effect on NO_(x) emissions(660–681 mg/m^(3) at 6%O_(2)).In comprehensive consideration of the pulverized coal combustion characteristics and the unit economic performance,an optimal TDA of 15°is recommended.展开更多
The unburned carbon concentration in fly ash and the influence of main factors on the reduction of nitrogen oxides during gaseous fuel reburning process were experimentally studied in a 36 kW down-fired furnace when f...The unburned carbon concentration in fly ash and the influence of main factors on the reduction of nitrogen oxides during gaseous fuel reburning process were experimentally studied in a 36 kW down-fired furnace when five typical coals with different qualities were served as the primary fuel. It is found that the higher nitrogen oxide reduction efficiency can be obtained by reburning process when the coal used as the primary fuel contains more volatile matter. But under the optimizational operating conditions, both above 50% nitrogen oxide reduction and low carbon loss can be achieved by reburning process even though the primary fuel is the low-volatile coal. The experimental results show that the reasonable residence time in reburn zone is 0.6-0.9 s, the appropriate gaseous reburn fuel percentage is 10%-15% and the optimal average excess air coefficient in reburn zone is 0.8-0.9. These results extend the ranges of the key parameter values for reburning process with respect to that the low-volatile coals are used as the primary fuel.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51706054)the China Postdoctoral Science Foundation(Grant No.2019M660633).
文摘Industrial-scale experiments were conducted to study the effects of tertiary air declination angle(TDA)on the coal combustion and steam temperature characteristics in the first 350-MW supercritical down-fired boiler in China with the multiple-injection and multiple-staging combustion(MIMSC)technology at medium and high loads.The experimental results indicated that as the TDA increased from 0°to 15°,the overall gas temperature in the lower furnace rose and the symmetry of temperature field was enhanced.The ignition distance of the fuel-rich coal/air flow decreased.In near-burner region,the concentration of O2 decreased while the concentrations of CO and NO increased.The concentration of NO decreased in near-tertiary-air region.The carbon in fly ash decreased significantly from 8.40%to 6.45%at a load of 260 MW.At a TDA of 15°,the ignition distances were the shortest(2.07 m and 1.73 m)at a load of 210 MW and 260 MW,respectively.The main and reheat steam temperatures were the highest(557.2℃ and 559.4℃ at a load of 210 MW,558.4℃ and 560.3℃ at a load of 260 MW).The carbon in fly ash was the lowest(4.83%)at a load of 210 MW.On changing the TDA from 15°to 25°,the flame kernel was found to move downward and the main and reheat steam temperatures dropped obviously.The change of TDA has little effect on NO_(x) emissions(660–681 mg/m^(3) at 6%O_(2)).In comprehensive consideration of the pulverized coal combustion characteristics and the unit economic performance,an optimal TDA of 15°is recommended.
基金Projects(50806025 50721005) supported by the National Natural Science Foundation of China
文摘The unburned carbon concentration in fly ash and the influence of main factors on the reduction of nitrogen oxides during gaseous fuel reburning process were experimentally studied in a 36 kW down-fired furnace when five typical coals with different qualities were served as the primary fuel. It is found that the higher nitrogen oxide reduction efficiency can be obtained by reburning process when the coal used as the primary fuel contains more volatile matter. But under the optimizational operating conditions, both above 50% nitrogen oxide reduction and low carbon loss can be achieved by reburning process even though the primary fuel is the low-volatile coal. The experimental results show that the reasonable residence time in reburn zone is 0.6-0.9 s, the appropriate gaseous reburn fuel percentage is 10%-15% and the optimal average excess air coefficient in reburn zone is 0.8-0.9. These results extend the ranges of the key parameter values for reburning process with respect to that the low-volatile coals are used as the primary fuel.