This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish ...Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.展开更多
With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to...With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increme...A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.展开更多
The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-...The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-coordination) channel, and the acceleration of cross-over frequency was also limited by angular velocity limiter, so the false cues in flight simulation process were clearly perceived by pilots. The paper studied the characteristics of the classical washout algorithm and flight simulator motion platform, tried to redesign the source of cross-over acceleration channel and translation acceleration channel, and transferred the part of cross-over acceleration that was unsimulated sustained acceleration to translation acceleration channel. Comparisons were mainly made between classical washout algorithm and revised algorithm in a longitudinal/pitch direction. The evaluation was based on the implementation of human vestibular perception system. The results demonstrated that the revised algorithm could significantly reduce the phase lag, and improved the spikes tracking performance. Furthermore, sensory angular velocity and the error of sensory acceleration were strictly controlled within the threshold of human perception system, and the displacement was a little broader than the classical washout algorithm. Therefore, it was proved that the new algorithm could diminish the filters parameters and heighten the self-adaptability for the washout algorithm. In addition, the magnitude of false cues was remarkably reduced during flight simulator, and the workspace utilization of the motion platform was developed by "closed-loop" control system.展开更多
This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a...This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.展开更多
Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the a...Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the ability of being opened or adjusted as needed draw many attentions in recent years.In this paper,a feedback control system was developed based on the method of microjet blowing.The proposed system includes a pressure adjusting valve to adjust the control effort,a dynamic pressure sensor to sense the inlet distortion intensity,a signal processing instrument to calculate the Root-Mean-Squared(RMS)pressure,and a controller to implement feedback control.To achieve high quality closed-loop controls at dynamic conditions,a novel nondimensional feedback method was developed.The advantage of this nondimensional method was validated at both off-design and arbitrarily changing Mach number conditions.With a sectional PI control law,the RMS control error reduced more than 56%at arbitrary changing conditions.Works in this paper also showed that the dynamics of this nondimensional system can be simplified as a stable second-order overdamped system.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi...The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.展开更多
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division m...In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy....The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used.展开更多
Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an ...Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.展开更多
This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference ...This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.展开更多
According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management...According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management system,andpointed out that efficient safety management lies in three factors:safety quality of all ofthe staff in coal mine enterprises,weak links in security management systems,and cooperationamong departments.After conducting detailed analysis of these three factors,we proposed concrete ways of preventing and controlling potential safety hazards duringthe process of coal mine production.展开更多
The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we prop...The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.展开更多
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
基金supported by the National Key Research and Development Program(Grant No.2020YFB1313200,2022YFC2805200)the National Natural Science Foundation of China(Grant No.52001260,52201381)Ningbo Natural Science Foundation(Grant No.2022J062).
文摘Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.
基金supported partially by the National Natural Science Foundation(No.62473344)the T-Flight Laboratory in ShanXi Provincial(No.GSFC2024NBKY05)+1 种基金the Natural Science Basic Research Program of Shaanxi(No.2025JC-YBQN-035)the National Natural Science Foundation of China(Grant No.92471204).
文摘With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金Program for New Century Excellent Talents in University (NCET-10-0032)
文摘A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.
基金Supported by Wuhan Technical College of Communications Fund(Q2018001)China Institute of Communications Education Fund(1602-248)Wuhan Technical College of Communications Innovation Team(CX2018A07)
文摘The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-coordination) channel, and the acceleration of cross-over frequency was also limited by angular velocity limiter, so the false cues in flight simulation process were clearly perceived by pilots. The paper studied the characteristics of the classical washout algorithm and flight simulator motion platform, tried to redesign the source of cross-over acceleration channel and translation acceleration channel, and transferred the part of cross-over acceleration that was unsimulated sustained acceleration to translation acceleration channel. Comparisons were mainly made between classical washout algorithm and revised algorithm in a longitudinal/pitch direction. The evaluation was based on the implementation of human vestibular perception system. The results demonstrated that the revised algorithm could significantly reduce the phase lag, and improved the spikes tracking performance. Furthermore, sensory angular velocity and the error of sensory acceleration were strictly controlled within the threshold of human perception system, and the displacement was a little broader than the classical washout algorithm. Therefore, it was proved that the new algorithm could diminish the filters parameters and heighten the self-adaptability for the washout algorithm. In addition, the magnitude of false cues was remarkably reduced during flight simulator, and the workspace utilization of the motion platform was developed by "closed-loop" control system.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(class A)(Grant No.XDA22040203)the Fundamental Research Funds for the Central Universities(Grant No.2019XX01)+1 种基金GDNRC[2020]031the Natural Science Foundation of Guangdong Province(Grant No.2020A1515010621).
文摘This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
基金supported by the National Natural Science Foundation of China (No.11602291)。
文摘Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the ability of being opened or adjusted as needed draw many attentions in recent years.In this paper,a feedback control system was developed based on the method of microjet blowing.The proposed system includes a pressure adjusting valve to adjust the control effort,a dynamic pressure sensor to sense the inlet distortion intensity,a signal processing instrument to calculate the Root-Mean-Squared(RMS)pressure,and a controller to implement feedback control.To achieve high quality closed-loop controls at dynamic conditions,a novel nondimensional feedback method was developed.The advantage of this nondimensional method was validated at both off-design and arbitrarily changing Mach number conditions.With a sectional PI control law,the RMS control error reduced more than 56%at arbitrary changing conditions.Works in this paper also showed that the dynamics of this nondimensional system can be simplified as a stable second-order overdamped system.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.
文摘In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
文摘The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used.
基金Supported by the National Basic Research Program of China (2010CB731800)the National Natural Science Foundation of China (60974059, 60736026, 61021063, 60904044, 61290324)Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation
文摘Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61233002)the 111 Project(Grant No.B16009)the IAPI Fundamental Research Funds(Grant No.2013ZCX03-01)
文摘This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.
文摘According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management system,andpointed out that efficient safety management lies in three factors:safety quality of all ofthe staff in coal mine enterprises,weak links in security management systems,and cooperationamong departments.After conducting detailed analysis of these three factors,we proposed concrete ways of preventing and controlling potential safety hazards duringthe process of coal mine production.
文摘The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.