The story goes back to the end of 2007, when Yang Min, Party secretary and deputy chief manager of theNantong Times Clothing Co., Ltd. in Rugao, Jiangsu Province, heard what had happened to an orphan in the city.
This paper gives integer linear programming models for scheduling doubles tennis group competitions. The goal is to build a fair and competitive schedule for all players. Our basic model achieves that for each player ...This paper gives integer linear programming models for scheduling doubles tennis group competitions. The goal is to build a fair and competitive schedule for all players. Our basic model achieves that for each player the average ranking of his partners in all matches is as close as possible to the average ranking of his opponents in all matches. One of the variations of the basic model provides that each matchup is fair and competitive. We also give models for the case when the number of players is 4n<span style="font-family:;" "=""> </span><span style="font-family:;" "="">+</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">2, and thus one of the matches has to be singles. Our models were implemented and tested using optimization software AMPL. Computational results along with schedules for some typical situations are also given the paper.</span>展开更多
The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the t...The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.展开更多
For a field k and two finite groups G and X, when G acts on X from the right by group automorphisms, there is a Hopf algebra structure on k-space (kX°P)* kG (see Theorem 2.1), called a non-balanced quantum ...For a field k and two finite groups G and X, when G acts on X from the right by group automorphisms, there is a Hopf algebra structure on k-space (kX°P)* kG (see Theorem 2.1), called a non-balanced quantum double and denoted by Dx(G). In this paper, some Hopf algebra properties of Dx (G) are given, the representation types of Dx (G) viewed as a k-algebra are discussed, the algebra structure and module category over Dx(G) are studied. Since the Hopf algebra structure of non-balanced quantum double DX (G) generMizes the usual quantum double D(G) for a finite group G, all results about Dx(G) in this paper can also be used to describe D(G) as a special case and the universal R-matrix of Dx (G) provides more solutions of Yang-Baxter equation.展开更多
In this article,we investigate the representations of the Drinfeld doubles D(Rmn(q))of the Radford Hopf algebras Rmn(q)over an algebraically closed field k,where m>1 and n>1 are integers and q∈k is a root of un...In this article,we investigate the representations of the Drinfeld doubles D(Rmn(q))of the Radford Hopf algebras Rmn(q)over an algebraically closed field k,where m>1 and n>1 are integers and q∈k is a root of unity of order n.Under the assumption char(k)■mn,all the finite-dimensional indecomposable modules over D(Rmn(q))are displayed and classified up to isomorphism.The Auslander-Reiten sequences in the category of finite-dimensional D(Rmn(q))-modules are also all displayed.It is shown that D(Rmn(q))is of tame representation type.展开更多
1 A new international study reveals that our digital avatars(化身)are reshaping how we connect with brands in virtual worlds like the metaverse(元宇宙).Unlike the simple cartoon avatars of yesterday's video games,...1 A new international study reveals that our digital avatars(化身)are reshaping how we connect with brands in virtual worlds like the metaverse(元宇宙).Unlike the simple cartoon avatars of yesterday's video games,these complicated digital doubles can touch,see and hear in virtual environments.展开更多
为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模...为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模为马尔可夫过程,通过设计状态空间、动作空间及奖励函数等实现文件工作流的任务完成时间与缓存成本的联合优化。其次,采用对抗式双重深度Q网络(dueling double deep Q network,D3QN)来降低训练时间,提高训练效率。仿真结果验证了提出方案在不同参数配置下文件传输的有效性,并且在任务体量增大时仍能保持较好的优化能力。展开更多
Lanthanide ions(Ln^(3+))doping provides a potential strategy to control over the luminescent properties of lead-free halide double perovskite nanocrystals(DP NCs).However,due to the low energy transfer efficiency betw...Lanthanide ions(Ln^(3+))doping provides a potential strategy to control over the luminescent properties of lead-free halide double perovskite nanocrystals(DP NCs).However,due to the low energy transfer efficiency between self-trapped exciton(STE)and Ln^(3+)ions,the characteristic emissions of Ln^(3+)ions are not prominent.Furthermore,the energy transfer mechanism between STE and Ln^(3+)ions is also elusive and requires in-depth study.We chose trace Bi^(3+)-doped Cs_(2)Ag_(0.6)Na_(0.4)InCl_(6-x)Br_(x) as a representative DP matrix to demonstrate that by tuning the bromide concentration,the Ln^(3+)emission can be greatly enhanced.Such enhanced STE and Ln^(3+)ions energy transfer originates from the high covalency of Ln-Br bond,which contributes to improve ment of the characteristic emission of Ln^(3+)ions.Furthermo re,optical spectroscopy reveals that the energy transfer mechanism from DP to Eu^(3+)ions is different from all the other doped Ln^(3+)ions.The energy transfer from DP to Eu^(3+)ions is mostly through Eu-Br charge transfer while the other Ln^(3+)ions are excited by energy transfer from STE.The distinct energy transfer mechanism has resulted from the energy separation between the excited energy level of Ln^(3+)ions and the bottom of conduction band of DP.With increasing the energy separation,the energy transfer from STE to Ln^(3+)ions is less efficient because of the generation of a larger number of phonons and finally becomes impossible for Eu^(3+)ions.Our results provide new insight into tuning the energy transfer of Ln^(3+)-doped DP NCs.展开更多
For environmental applications,it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer.Here,a novel Agbridged dual Z-scheme Ag/g-C_(3)N_(4)/CoNi...For environmental applications,it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer.Here,a novel Agbridged dual Z-scheme Ag/g-C_(3)N_(4)/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method,with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity,rapid combination of photogenerated carriers,and unstable structure.These materials were characterized by XRD,FT-IR,SEM,TEM UV-Vis/DRS,and XPS to verify the structure and stability of the heterostructure.The pristine LDH,g-C_(3)N_(4),and Ag/g-C_(3)N_(4)/CoNi-LDH composite were investigated as photocatalysts for water remediation,an environmentally motivated process.Specifically,the photocatalytic degradation of tetracycline was studied as a model reaction.The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon.The influence of several experimental parameters such as catalyst loading,pH,and tetracycline concentrationwere evaluated.The current study provides important data for water treatment and similar environmental protection applications.展开更多
To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃...To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.展开更多
Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic pr...Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic properties has not yet been investigated. Herein, we synthesized two new Ruddlesden–Popper LFHDPs, namely(C_(5)H_(12)N)_(4)AgBiI_(8)(CAB-1) and(C_(6)H_(14)N)_(4)Ag Bi I8(CAB-2) using cyclopentylamine and cyclohexylamine as monoamine ligands. Indeed, these two Ag(Ⅰ)-Bi(Ⅲ) LFHDPs form smooth and uniform films ranging in thickness from 250 nm to 1 μm, with preferred orientations. Notably, the studies on the optical properties showed that the direct band gap value decreased from 2.17 e V to 1.91 e V for CAB-1 and from 2.05 e V to 1.86 e V for CAB-2 with increasing thickness. Accordingly, photo-current response using a xenon lamp revealed a significant difference of over 1000 n A between light and dark conditions for1 μm-thickness films, suggesting potential for light harvesting. Other than that, thicker films of CAB-1and CAB-2 exhibit high stability for 90 days in a relatively humid environment(RH of 55%), paving the way for promising optoelectronic applications.展开更多
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin...In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).展开更多
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur...Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.展开更多
Layered double hydroxides(LDHs)as coatings attract much attention in corrosion and protection of light metals due to their interesting properties such as in-situ synthesis,unique layer-stacking structure,tunable compo...Layered double hydroxides(LDHs)as coatings attract much attention in corrosion and protection of light metals due to their interesting properties such as in-situ synthesis,unique layer-stacking structure,tunable composition,and good biocompatibility as well.Currently,single LDH coating faces challenges such as time-consumed synthesis,thin coating thickness and inadequate density.This paper provides a systematic review of the cutting-edge advancements in modulation of composition,synthesis and applications of LDHs on Mg and Al alloys in corrosion protection and biomedicalfields.The focus is concentrated on the intercalation of corrosion inhibitors into LDH coatings.Particularly the anti-corrosion mechanisms of both inorganic anions(nitrate,vanadate,and molybdate)and organic anion intercalation(carboxylic acid anions and hydroxyquinolines)were discussed within the context of corrosion inhibitor intercalation LDH.The modification of LDHs is introduced with low surface energy substances such as silanes and fatty acids.The formation mechanism of LDHfilms and the active anti-corrosion mechanisms were proposed.A comparison of LDH coatings between Mg alloy and Al alloy was carried out from different perspectives,and further researches on LDH corrosion protection were prospected.展开更多
Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical domina...Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical dominant degradation pathway into a nonradical degradation pathway.Herein,an interface ar-chitecture of Ti_(3) C_(2) T_(x)-MXene(MXene)loading on the Fe-Al LDH scaffold was developed,which showed excellent stability and robust resistance against harsh conditions.Significantly,the rate constant for tetra-cycline hydrochloride(TC)degradation in the MXene-LDH/PMS process was 0.421 min^(-1),which was ten times faster than the rate constant for pure Fe-Al LDH(0.042 min^(-1)).Specifically,more reactive Fe with the closer d-band center to the Fermi level results in higher electron transfer efficiency.The occupa-tions of Fe-3d orbitals in Mxene/Fe-Al LDH are pushed above the Fermi level to generate,which results in higher PMS adsorption and inhibition of the release of oxygen-containing active species intermedi-ates,leading to the enhanced^(1)O_(2) generation.Additionally,the built-in electric field in the heterojunc-tion was driven by the charge redistribution between MXene and Fe-Al LDH,resulting in a mediated-electron transfer mechanism,differentiating it from the Fe-Al LDH/PMS system.It was fascinating that MXene/Fe-Al LDH achieved satisfactory treatment efficiency in continuous column reactor and real landfill leachate.展开更多
文摘The story goes back to the end of 2007, when Yang Min, Party secretary and deputy chief manager of theNantong Times Clothing Co., Ltd. in Rugao, Jiangsu Province, heard what had happened to an orphan in the city.
文摘This paper gives integer linear programming models for scheduling doubles tennis group competitions. The goal is to build a fair and competitive schedule for all players. Our basic model achieves that for each player the average ranking of his partners in all matches is as close as possible to the average ranking of his opponents in all matches. One of the variations of the basic model provides that each matchup is fair and competitive. We also give models for the case when the number of players is 4n<span style="font-family:;" "=""> </span><span style="font-family:;" "="">+</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">2, and thus one of the matches has to be singles. Our models were implemented and tested using optimization software AMPL. Computational results along with schedules for some typical situations are also given the paper.</span>
文摘The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.
基金Supported by Doctoral Foundation of Qingdao University of Science and Technology (20080022398)the National Natural Science Foundation of China (11271318, 11171296)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110101110010)
文摘For a field k and two finite groups G and X, when G acts on X from the right by group automorphisms, there is a Hopf algebra structure on k-space (kX°P)* kG (see Theorem 2.1), called a non-balanced quantum double and denoted by Dx(G). In this paper, some Hopf algebra properties of Dx (G) are given, the representation types of Dx (G) viewed as a k-algebra are discussed, the algebra structure and module category over Dx(G) are studied. Since the Hopf algebra structure of non-balanced quantum double DX (G) generMizes the usual quantum double D(G) for a finite group G, all results about Dx(G) in this paper can also be used to describe D(G) as a special case and the universal R-matrix of Dx (G) provides more solutions of Yang-Baxter equation.
基金supported by National Natural Science Foundation of China(Grant Nos.12201545 and 12071412)。
文摘In this article,we investigate the representations of the Drinfeld doubles D(Rmn(q))of the Radford Hopf algebras Rmn(q)over an algebraically closed field k,where m>1 and n>1 are integers and q∈k is a root of unity of order n.Under the assumption char(k)■mn,all the finite-dimensional indecomposable modules over D(Rmn(q))are displayed and classified up to isomorphism.The Auslander-Reiten sequences in the category of finite-dimensional D(Rmn(q))-modules are also all displayed.It is shown that D(Rmn(q))is of tame representation type.
文摘1 A new international study reveals that our digital avatars(化身)are reshaping how we connect with brands in virtual worlds like the metaverse(元宇宙).Unlike the simple cartoon avatars of yesterday's video games,these complicated digital doubles can touch,see and hear in virtual environments.
文摘为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模为马尔可夫过程,通过设计状态空间、动作空间及奖励函数等实现文件工作流的任务完成时间与缓存成本的联合优化。其次,采用对抗式双重深度Q网络(dueling double deep Q network,D3QN)来降低训练时间,提高训练效率。仿真结果验证了提出方案在不同参数配置下文件传输的有效性,并且在任务体量增大时仍能保持较好的优化能力。
基金Project supported by the Research Project of Mindu Innovation Laboratory(2021ZZ114)Natural Science Foundation of Xiamen(3502Z20227255)+1 种基金Major Research Project of Xiamen(3502Z20191015)the Science and Technology Major Project of Fujian Province(2021HZ021013)。
文摘Lanthanide ions(Ln^(3+))doping provides a potential strategy to control over the luminescent properties of lead-free halide double perovskite nanocrystals(DP NCs).However,due to the low energy transfer efficiency between self-trapped exciton(STE)and Ln^(3+)ions,the characteristic emissions of Ln^(3+)ions are not prominent.Furthermore,the energy transfer mechanism between STE and Ln^(3+)ions is also elusive and requires in-depth study.We chose trace Bi^(3+)-doped Cs_(2)Ag_(0.6)Na_(0.4)InCl_(6-x)Br_(x) as a representative DP matrix to demonstrate that by tuning the bromide concentration,the Ln^(3+)emission can be greatly enhanced.Such enhanced STE and Ln^(3+)ions energy transfer originates from the high covalency of Ln-Br bond,which contributes to improve ment of the characteristic emission of Ln^(3+)ions.Furthermo re,optical spectroscopy reveals that the energy transfer mechanism from DP to Eu^(3+)ions is different from all the other doped Ln^(3+)ions.The energy transfer from DP to Eu^(3+)ions is mostly through Eu-Br charge transfer while the other Ln^(3+)ions are excited by energy transfer from STE.The distinct energy transfer mechanism has resulted from the energy separation between the excited energy level of Ln^(3+)ions and the bottom of conduction band of DP.With increasing the energy separation,the energy transfer from STE to Ln^(3+)ions is less efficient because of the generation of a larger number of phonons and finally becomes impossible for Eu^(3+)ions.Our results provide new insight into tuning the energy transfer of Ln^(3+)-doped DP NCs.
文摘For environmental applications,it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer.Here,a novel Agbridged dual Z-scheme Ag/g-C_(3)N_(4)/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method,with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity,rapid combination of photogenerated carriers,and unstable structure.These materials were characterized by XRD,FT-IR,SEM,TEM UV-Vis/DRS,and XPS to verify the structure and stability of the heterostructure.The pristine LDH,g-C_(3)N_(4),and Ag/g-C_(3)N_(4)/CoNi-LDH composite were investigated as photocatalysts for water remediation,an environmentally motivated process.Specifically,the photocatalytic degradation of tetracycline was studied as a model reaction.The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon.The influence of several experimental parameters such as catalyst loading,pH,and tetracycline concentrationwere evaluated.The current study provides important data for water treatment and similar environmental protection applications.
基金The National Natural Science Foundation of China(No.52338011).
文摘To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.
基金supported by the National Natural Science Foundation of China (Nos. 22375157 and W2433042)the Key Scientific and Technological Innovation Team of Shaanxi Province(No. 2020TD-001)+1 种基金the Fundamental Research Funds for Central Universities, State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE23409)the Instrument Analysis Center of Xi’an Jiaotong University for assistance。
文摘Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic properties has not yet been investigated. Herein, we synthesized two new Ruddlesden–Popper LFHDPs, namely(C_(5)H_(12)N)_(4)AgBiI_(8)(CAB-1) and(C_(6)H_(14)N)_(4)Ag Bi I8(CAB-2) using cyclopentylamine and cyclohexylamine as monoamine ligands. Indeed, these two Ag(Ⅰ)-Bi(Ⅲ) LFHDPs form smooth and uniform films ranging in thickness from 250 nm to 1 μm, with preferred orientations. Notably, the studies on the optical properties showed that the direct band gap value decreased from 2.17 e V to 1.91 e V for CAB-1 and from 2.05 e V to 1.86 e V for CAB-2 with increasing thickness. Accordingly, photo-current response using a xenon lamp revealed a significant difference of over 1000 n A between light and dark conditions for1 μm-thickness films, suggesting potential for light harvesting. Other than that, thicker films of CAB-1and CAB-2 exhibit high stability for 90 days in a relatively humid environment(RH of 55%), paving the way for promising optoelectronic applications.
基金financially supported by the National Natural Science Foundation of China(52172245)the Key Scientific and Technological Innovation Project of Shandong(2023CXGC010302)the Qingdao Flexible Materials Precision Die-cutting Technology Innovation Center。
文摘In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).
基金funded by the National Science Centre,Poland,on the basis of the decision number UMO-2020/37/B/ST8/02097supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 9880).
文摘Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.
基金supported by the National Natural Science Foundation of China(Grant Nos.52471080 and 52071191).
文摘Layered double hydroxides(LDHs)as coatings attract much attention in corrosion and protection of light metals due to their interesting properties such as in-situ synthesis,unique layer-stacking structure,tunable composition,and good biocompatibility as well.Currently,single LDH coating faces challenges such as time-consumed synthesis,thin coating thickness and inadequate density.This paper provides a systematic review of the cutting-edge advancements in modulation of composition,synthesis and applications of LDHs on Mg and Al alloys in corrosion protection and biomedicalfields.The focus is concentrated on the intercalation of corrosion inhibitors into LDH coatings.Particularly the anti-corrosion mechanisms of both inorganic anions(nitrate,vanadate,and molybdate)and organic anion intercalation(carboxylic acid anions and hydroxyquinolines)were discussed within the context of corrosion inhibitor intercalation LDH.The modification of LDHs is introduced with low surface energy substances such as silanes and fatty acids.The formation mechanism of LDHfilms and the active anti-corrosion mechanisms were proposed.A comparison of LDH coatings between Mg alloy and Al alloy was carried out from different perspectives,and further researches on LDH corrosion protection were prospected.
基金financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK1003)the Science and Technology Innovation Pro-gram of Hunan Province(No.2022RC1122)。
文摘Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical dominant degradation pathway into a nonradical degradation pathway.Herein,an interface ar-chitecture of Ti_(3) C_(2) T_(x)-MXene(MXene)loading on the Fe-Al LDH scaffold was developed,which showed excellent stability and robust resistance against harsh conditions.Significantly,the rate constant for tetra-cycline hydrochloride(TC)degradation in the MXene-LDH/PMS process was 0.421 min^(-1),which was ten times faster than the rate constant for pure Fe-Al LDH(0.042 min^(-1)).Specifically,more reactive Fe with the closer d-band center to the Fermi level results in higher electron transfer efficiency.The occupa-tions of Fe-3d orbitals in Mxene/Fe-Al LDH are pushed above the Fermi level to generate,which results in higher PMS adsorption and inhibition of the release of oxygen-containing active species intermedi-ates,leading to the enhanced^(1)O_(2) generation.Additionally,the built-in electric field in the heterojunc-tion was driven by the charge redistribution between MXene and Fe-Al LDH,resulting in a mediated-electron transfer mechanism,differentiating it from the Fe-Al LDH/PMS system.It was fascinating that MXene/Fe-Al LDH achieved satisfactory treatment efficiency in continuous column reactor and real landfill leachate.