The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-m...The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-middle Miocene deformed rocks of the inter-Andean valley between the Western and Central Cordilleras of Colombia.However,uncertainty remains about the age of the latest accretionary phases of the Panama-ChocóBlock.Poorly studied late Miocene volcanic rocks within the northern inter-Andean valley may provide key information to constrain the temporality of that final collision.Here,we study the deformational features of the~12-6 Ma extrusive rocks of the Combia Volcanic Province located in the northwestern Andes(Colombia).We present anisotropy of magnetic susceptibility(AMS)data for pyroclastic and volcanic rocks within the AmagáBasin,an inter-Andean depression with Oligocene-middle Miocene sedimentary rocks that recorded NW-SE compression and NE-SW simple shear caused by the Panama-ChocóBlock collision.We identified that the magnetic fabrics of the extrusive rocks of the Combia Volcanic Province reveal flow directions that indicate the occurrence of ancient volcanoes in the central axis of the AmagáBasin.Some of these fabrics do not contain any deformational features,whereas others record the same structural regime as the Oligocene-middle Miocene sedimentary rocks.We infer that variations in the intensity of the deformation promoted late Miocene local fault reactivations that,in contrast to the Oligocene-middle Miocene deformational events,did not affect the entire AmagáBasin.Age differences among the studied sections can also explain the different deformational patterns identified in the basin.Both interpretations suggest that the most significant collisional events of the Panama-ChocóBlock occurred in the Oligocene-middle Miocene,whereas the formation of the Combia Volcanic Province may have either followed or coincided with the latest stages of the accretion.展开更多
Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIM...Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIMD(Fabric integrated with map and DAG)。该机制在背书节点处通过映射识别交易间依赖关系,并使用有向无环图对此关系进行构建,以调整交易背书顺序,从而有效避免了交易冲突现象的出现。实验证明,当存在多笔相互关联的并发交易时,FabricIMD机制能显著减少因交易冲突导致的无效交易。随着交易间冲突程度的变化,系统有效交易吞吐量提升了15.68%~96.08%。此外,在处理无关联的并发交易时,引入该机制并未对系统性能造成显著影响。综上,FabricIMD机制在避免交易冲突现象出现的同时提高了系统有效交易吞吐量,减少了无效交易数量。展开更多
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L...Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.展开更多
Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing th...Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing thermoelectric devices with exceptional flexibility,enduring thermoelectric stability,multi-functional sensing,and comfortable wear remains a challenge.In this work,a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli.This is achieved by constructing an adhesive polydopamine(PDA)layer on the nylon fabric surface,which facilitates the subsequent MXene attachment through hydrogen bonding.This fusion results in MXene-based thermo-electric fabric that excels in both temperature sensing and strain sensing.The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability,while also delivering excellent sensitivity,rapid responsiveness(60 ms),and remarkable durability in strain sens-ing(3200 cycles).Moreover,when affixed to a mask,this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat,converting it into electrical energy and accurately discerning the body’s respiratory rate.In addition,the MXene-based ther-moelectric fabric can monitor the state of the body’s joint through its own deformation.Furthermore,it possesses the capability to convert solar energy into heat.These findings indicate that MXene-based ther-moelectric fabric holds great promise for applications in power generation,motion tracking,and health monitoring.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using pro...This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using prohibited materials in the manufacture of these fabrics, and the use of unknown dyes has proven that some of them cause diseases to humans, especially children, that cause cancerous diseases. With the study sample consisting of (7), the study results indicate the presence of toxic formaldehyde in all sample dyes obtained from discount markets and online shopping.展开更多
Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active mate...Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active material in the fabrication of supercapacitor(SC)and triboelectric nanogenerator(TENG).At first,a binder-free ZnCuSe_(2)/CF was synthesized via a simple and facial hydrothermal synthesis approach,and the electrochemical properties of the obtained ZnCuSe_(2)/CF were evaluated by fabricating a symmetric quasi-solid-state SC(SQSSC).The ZCS-2(Zn:Cu ratio of 2:1)material deposited CF-based SQSSC exhibited good electrochemical properties,and the obtained maximum energy and power densities were 7.5 Wh kg^(-1)and 683.3 W kg^(-1),respectively with 97.6%capacitance retention after 30,000 cycles.Furthermore,the ZnCuSe_(2)/CF was coated with silicone rubber elastomer using a doctor blade technique,which is used as a negative triboelectric material in the fabrication of the multiple TENG(M-TENG).The fabricated M-TENG exhibited excellent electrical output performance,and the robustness and mechanical stability of the device were studied systematically.The practicality and applicability of the proposed M-TENG and SQSSC were systematically investigated by powering various low-power portable electronic components.Finally,the SQSSC was combined with the M-TENG to construct a SCHPS.The fabricated SCHPS provides a feasible solution for sustainable power supply,and it shows great potential in self-powered portable electronic device applications.展开更多
Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite m...Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite materials for UV protection and microbial resistance in clothing. Nanoscale UV-blocking agents enhance the protection of textiles against harmful ultraviolet radiation. Recent studies on composites such as ZnO/carboxymethyl chitosan, polyacrylonitrile with UV absorbers and TiO2 nanoparticles, and lignin-TiO composites have shown significant improvements in UV protection and some antibacterial activity. Techniques such as electrospinning, hydrothermal synthesis, and natural fibre welding were used to create these composites, focusing on ZnO and TiO2 nanoparticles for dual functionality. Research on nanoscale UV-blocking agents could revolutionise sun protection in clothing and offer better safety against ultraviolet radiation. Multifunctional composites with UV-blocking and antibacterial properties could advance the use of protective clothing in various industries and outdoor activities. Emphasising natural fibres and sustainable materials aligns with the global trend towards eco-friendly solutions, leading to more environmentally friendly products. This literature review aims to comprehensively review and analyze current research on UV protective knit fabrics using nanotechnology, nanocomposites, and biocomposites. It seeks to identify research gaps, evaluate different approaches, and provide insights for future developments in this field.展开更多
Tie‑dye is a traditional craft that has been passed down through generations.It is an ancient art form that involves tying and dyeing fabric to create beautiful patterns.This craft is not only a way to make clothes an...Tie‑dye is a traditional craft that has been passed down through generations.It is an ancient art form that involves tying and dyeing fabric to create beautiful patterns.This craft is not only a way to make clothes and textiles more colorful but also a way to express creativity and culture.展开更多
Inspired by the aquatic-adapted pit structures of the Cybister beetles that enable high-speed swimming,this study employs warp-knitted technology to fabricate drag-reduction swimwear textiles.Eight distinct fabric mor...Inspired by the aquatic-adapted pit structures of the Cybister beetles that enable high-speed swimming,this study employs warp-knitted technology to fabricate drag-reduction swimwear textiles.Eight distinct fabric morphologies were produced,and a self-developed high-precision dynamic drag measurement device was used to systematically analyze the mechanisms underlying the drag-reduction performance of these biomimetic pit structures.The device incorporates a servomotor,ball screw linkage,and high-precision tension sensor,enabling real-time and accurate detection of fluid drag forces.It effectively overcomes the limitations of traditional indirect measurement methods,including dynamic response lag and insufficient accuracy.Experimental results demonstrate that the hydrophobic small-pit fabric(4^(#))achieves an 84% drag reduction at 400 mm/s,outperforming the control sample(warp-knitted fabric 7^(#)).This significant reduction is attributed to the Cassie state established on the hydrophobic surface,which substantially decreases viscous drag and the microvortices generated by the pit structures,which delay flow separation and effectively minimize pressure drag.Furthermore,small-pit fabrics demonstrate a drag reduction rate 26% to 50% higher than that of large-pit structures,highlighting the critical importance of matching the pit scale to the thickness of the near-wall viscous sublayer for optimal drag reduction.This study establishes a theoretical foundation for the biomimetic design of high-performance drag-reduction swimsuits.The developed drag-measuring device also provides a standardized experimental platform for hydrodynamic studies of flexible materials,supporting a shift from empirical design methodologies to theory-driven approaches in drag-reduction technology and exhibiting significant potential for future advancements.展开更多
When the 2025 Intertextile Apparel Fabrics Exhibition(Autumn/Winter)was held in Shanghai,more than 3,700 top exhibitors from 26 countries and regions around the world participated.From September 2nd to 4th,the 2025&qu...When the 2025 Intertextile Apparel Fabrics Exhibition(Autumn/Winter)was held in Shanghai,more than 3,700 top exhibitors from 26 countries and regions around the world participated.From September 2nd to 4th,the 2025"Keqiao Selected"exhibition shone brightly at the event,showcasing the high-end quality of its products and the innovative strength of its regional brands.展开更多
Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materi...Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materials commonly used to manufacture MNs include silicon,polymers,ceramics and metals.Metallic MNs(MMNs)have drawn significant attention owing to its superior mechanical properties,machinability,and biocompatibility.This paper is a state-of-the-art review of the structure,fabrication technologies,and applications of MMNs.According to the relative position of the axis of MN and the plane of the substrate,MMNs can be divided into in-plane and out-of-plane.Solid,hollow,coated and porous MMNs are also employed to characterize their internal and surface structures.Until now,numerous fabrication technologies,including cutting tool machining,non-traditional machining,etching,hot-forming,and additive manufacturing,have been used to fabricate MMNs.The recent advances in the application of MMNs in drug delivery,disease diagnosis,and cosmetology are also discussed in-depth.Finally,the shortcomings in the fabrication and application of MMNs and future directions for development are highlighted.展开更多
The shortage of freshwater has become a global challenge,exacerbated by global warming and the rapid growth of the world’s population.Researchers across various fields have made numerous attempts to efficiently colle...The shortage of freshwater has become a global challenge,exacerbated by global warming and the rapid growth of the world’s population.Researchers across various fields have made numerous attempts to efficiently collect freshwater for human use.These efforts include seawater desalination through reverse osmosis or distillation,sewage treatment technologies,and atmospheric water harvesting.However,after thoroughly exploring traditional freshwater harvesting methods,it has become clear that bio-inspired fog harvesting technology offers new prospects due to its unique advantages of efficiency and sustainability.This paper systematically introduces the current principles of fog harvesting and wettability mechanism found in nature.It reviews the research status of combining bionic fog harvesting materials with textile science from two distinct dimensions.Additionally,it describes the practical applications of fog harvesting materials in agriculture,industry,and domestic water use,analyzes their prospects and feasibility in engineering projects,discusses potential challenges in practical applications,and envisions future trends and directions for the development of these materials.展开更多
The Lenzing Group,a leading supplier of regenerated cellulosic fibers for the textile and nonwovens industries,has unveiled innov ative fabric blends that address one of fashion's most persistent circularity chall...The Lenzing Group,a leading supplier of regenerated cellulosic fibers for the textile and nonwovens industries,has unveiled innov ative fabric blends that address one of fashion's most persistent circularity challenges:maintaining premium quality while incorporating significant recycled dontent.Through strategic manufacturing partnerships,Lenzing has successfully demonstrated how its responsibly sourlced and resource-efficiently produced TENCEL Im Lyocell fibers transform the unpredictable quality of mechanically recycled natural fibers into consistent,commercially-viable fabrics.展开更多
Theproliferation of Internet of Things(IoT)devices introduces substantial security challenges.Currently,privacy constitutes a significant concern for individuals.While maintaining privacy within these systems is an es...Theproliferation of Internet of Things(IoT)devices introduces substantial security challenges.Currently,privacy constitutes a significant concern for individuals.While maintaining privacy within these systems is an essential characteristic,it often necessitates certain compromises,such as complexity and scalability,thereby complicating management efforts.The principal challenge lies in ensuring confidentiality while simultaneously preserving individuals’anonymity within the system.To address this,we present our proposed architecture for managing IoT devices using blockchain technology.Our proposed architecture works on and off blockchain and is integrated with dashcams and closed-circuit television(CCTV)security cameras.In this work,the videos recorded by the dashcams and CCTV security cameras are hashed through the InterPlanetary File System(IPFS)and this hash is stored in the blockchain.When the accessors want to access the video,they must pass through multiple authentications which include web token authentication and verifiable credentials,to mitigate the risk of malicious users.Our contributions include the proposition of the framework,which works on the single key for every new video,and a novel chaincode algorithm that incorporates verifiable credentials.Analyses are made to show the system’s throughput and latency through stress testing.Significant advantages of the proposed architecture are shown by comparing them to existing schemes.The proposed architecture features a robust design that significantly enhances the security of blockchain-enabled Internet of Things(IoT)deviceswhile effectively mitigating the risk of a single point of failure,which provides a reliable solution for security concerns in the IoT landscape.Our future endeavors will focus on scaling the system by integrating innovative methods to enhance security measures further.展开更多
Aiming to solve the problem of large discharge and severe pollution of reactive dyeing wastewater for wool fabrics,peroxodisulfate(SPS)was used for the degradation and recycling of dyeing wastewater containing reactiv...Aiming to solve the problem of large discharge and severe pollution of reactive dyeing wastewater for wool fabrics,peroxodisulfate(SPS)was used for the degradation and recycling of dyeing wastewater containing reactive dye Lanasol Red CE.The process of degrading the reactive dye was determined by using the dye residual rate as the evaluation index.The feasibility of reactive dyeing of wool fabrics using recycled dyeing wastewater was confirmed by measuring the dye uptake,exhaustion and fixation rates,as well as color parameters and fastness of the dyed fabrics.The results showed that the appropriate conditions for degrading Lanasol Red CE were 0.2 g/L SPS,an initial pH value of 3 and 100℃for 30 min.Under these conditions,the dye degradation rate was as high as 93.14%.When the recycled dyeing wastewater was used for dyeing of wool fabrics,the exhaustion rate of Lanasol Red CE exceeded 99%,and the fixation rate was higher than that achieved by the conventional dyeing process.Under the same dyeing conditions,the recycled-dyed fabrics appeared darker.When the number of cycles was fewer than five,the effect on color fastness was not obvious.Although the color fastness to rubbing and washing of the fabrics dyed in the 10th cycle decreased by half a grade and 1 grade,respectively,compared to that of the fabrics dyed with the conventional dyeing process,they still met the production requirements.展开更多
基金supported financially by the National Natural Science Foundation of China(Grants W2433104 to V.A.P.and 42225402 to J.L.)the China Postdoctoral Science Foundation(Grant 2024M753205 to V.A.P.)+2 种基金the Institute of Geology and Geophysics of the Chinese Academy of Sciences(International Fellowship for Postdoctoral Researchers,Grant 2025PD02 to V.A.P.)an association between ECOS-NORD(France)and Colciencias/Icetex(Colombia)(Grant C12U01 to M.I.M.)Part of this project was developed under a junior fellowship scheme of Colciencias(Colombia)(Grant 706-2015 to V.A.P.),which also supported the undergraduate final project of A.T.
文摘The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-middle Miocene deformed rocks of the inter-Andean valley between the Western and Central Cordilleras of Colombia.However,uncertainty remains about the age of the latest accretionary phases of the Panama-ChocóBlock.Poorly studied late Miocene volcanic rocks within the northern inter-Andean valley may provide key information to constrain the temporality of that final collision.Here,we study the deformational features of the~12-6 Ma extrusive rocks of the Combia Volcanic Province located in the northwestern Andes(Colombia).We present anisotropy of magnetic susceptibility(AMS)data for pyroclastic and volcanic rocks within the AmagáBasin,an inter-Andean depression with Oligocene-middle Miocene sedimentary rocks that recorded NW-SE compression and NE-SW simple shear caused by the Panama-ChocóBlock collision.We identified that the magnetic fabrics of the extrusive rocks of the Combia Volcanic Province reveal flow directions that indicate the occurrence of ancient volcanoes in the central axis of the AmagáBasin.Some of these fabrics do not contain any deformational features,whereas others record the same structural regime as the Oligocene-middle Miocene sedimentary rocks.We infer that variations in the intensity of the deformation promoted late Miocene local fault reactivations that,in contrast to the Oligocene-middle Miocene deformational events,did not affect the entire AmagáBasin.Age differences among the studied sections can also explain the different deformational patterns identified in the basin.Both interpretations suggest that the most significant collisional events of the Panama-ChocóBlock occurred in the Oligocene-middle Miocene,whereas the formation of the Combia Volcanic Province may have either followed or coincided with the latest stages of the accretion.
文摘Hyperledger Fabric是一个主流的联盟链平台,当面临多笔并发执行且相互关联的交易时,现有架构容易生成大量无效交易,这严重降低了系统的有效交易处理能力。为了解决这一问题,提出一种融合映射与有向无环图(DAG)的冲突消除机制—FabricIMD(Fabric integrated with map and DAG)。该机制在背书节点处通过映射识别交易间依赖关系,并使用有向无环图对此关系进行构建,以调整交易背书顺序,从而有效避免了交易冲突现象的出现。实验证明,当存在多笔相互关联的并发交易时,FabricIMD机制能显著减少因交易冲突导致的无效交易。随着交易间冲突程度的变化,系统有效交易吞吐量提升了15.68%~96.08%。此外,在处理无关联的并发交易时,引入该机制并未对系统性能造成显著影响。综上,FabricIMD机制在避免交易冲突现象出现的同时提高了系统有效交易吞吐量,减少了无效交易数量。
基金supported by the National Key R&D Plan Program of China(No.2021YFB3400800)Henan Key Research and Development Program(No.231111241000)+1 种基金the Joint Fund of Henan Province Science and Technology R&D Program(No.225200810026)Zhongyuan Scholar Workstation Funded Program(No.224400510025).
文摘Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.
基金supported by the National Natural Science Foundation of China(No.21975107)the China Scholarship Council(No.202206790046).
文摘Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing thermoelectric devices with exceptional flexibility,enduring thermoelectric stability,multi-functional sensing,and comfortable wear remains a challenge.In this work,a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli.This is achieved by constructing an adhesive polydopamine(PDA)layer on the nylon fabric surface,which facilitates the subsequent MXene attachment through hydrogen bonding.This fusion results in MXene-based thermo-electric fabric that excels in both temperature sensing and strain sensing.The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability,while also delivering excellent sensitivity,rapid responsiveness(60 ms),and remarkable durability in strain sens-ing(3200 cycles).Moreover,when affixed to a mask,this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat,converting it into electrical energy and accurately discerning the body’s respiratory rate.In addition,the MXene-based ther-moelectric fabric can monitor the state of the body’s joint through its own deformation.Furthermore,it possesses the capability to convert solar energy into heat.These findings indicate that MXene-based ther-moelectric fabric holds great promise for applications in power generation,motion tracking,and health monitoring.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
文摘This research study fabrics to ensure that they are free from carcinogenic dyes. It has been observed that there are poor-quality fabrics and consumers go to buy them without paying attention to the risks of using prohibited materials in the manufacture of these fabrics, and the use of unknown dyes has proven that some of them cause diseases to humans, especially children, that cause cancerous diseases. With the study sample consisting of (7), the study results indicate the presence of toxic formaldehyde in all sample dyes obtained from discount markets and online shopping.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708)partly supported by the GRRC program of Gyeonggi province(GRRCKyungHee2023-B03).
文摘Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active material in the fabrication of supercapacitor(SC)and triboelectric nanogenerator(TENG).At first,a binder-free ZnCuSe_(2)/CF was synthesized via a simple and facial hydrothermal synthesis approach,and the electrochemical properties of the obtained ZnCuSe_(2)/CF were evaluated by fabricating a symmetric quasi-solid-state SC(SQSSC).The ZCS-2(Zn:Cu ratio of 2:1)material deposited CF-based SQSSC exhibited good electrochemical properties,and the obtained maximum energy and power densities were 7.5 Wh kg^(-1)and 683.3 W kg^(-1),respectively with 97.6%capacitance retention after 30,000 cycles.Furthermore,the ZnCuSe_(2)/CF was coated with silicone rubber elastomer using a doctor blade technique,which is used as a negative triboelectric material in the fabrication of the multiple TENG(M-TENG).The fabricated M-TENG exhibited excellent electrical output performance,and the robustness and mechanical stability of the device were studied systematically.The practicality and applicability of the proposed M-TENG and SQSSC were systematically investigated by powering various low-power portable electronic components.Finally,the SQSSC was combined with the M-TENG to construct a SCHPS.The fabricated SCHPS provides a feasible solution for sustainable power supply,and it shows great potential in self-powered portable electronic device applications.
文摘Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite materials for UV protection and microbial resistance in clothing. Nanoscale UV-blocking agents enhance the protection of textiles against harmful ultraviolet radiation. Recent studies on composites such as ZnO/carboxymethyl chitosan, polyacrylonitrile with UV absorbers and TiO2 nanoparticles, and lignin-TiO composites have shown significant improvements in UV protection and some antibacterial activity. Techniques such as electrospinning, hydrothermal synthesis, and natural fibre welding were used to create these composites, focusing on ZnO and TiO2 nanoparticles for dual functionality. Research on nanoscale UV-blocking agents could revolutionise sun protection in clothing and offer better safety against ultraviolet radiation. Multifunctional composites with UV-blocking and antibacterial properties could advance the use of protective clothing in various industries and outdoor activities. Emphasising natural fibres and sustainable materials aligns with the global trend towards eco-friendly solutions, leading to more environmentally friendly products. This literature review aims to comprehensively review and analyze current research on UV protective knit fabrics using nanotechnology, nanocomposites, and biocomposites. It seeks to identify research gaps, evaluate different approaches, and provide insights for future developments in this field.
文摘Tie‑dye is a traditional craft that has been passed down through generations.It is an ancient art form that involves tying and dyeing fabric to create beautiful patterns.This craft is not only a way to make clothes and textiles more colorful but also a way to express creativity and culture.
基金the financial support from the Fundamental Research Funds for the Central Universities(JUSRP122003)the fellowship of China Postdoctoral Science Foundation(2022TQ0123).
文摘Inspired by the aquatic-adapted pit structures of the Cybister beetles that enable high-speed swimming,this study employs warp-knitted technology to fabricate drag-reduction swimwear textiles.Eight distinct fabric morphologies were produced,and a self-developed high-precision dynamic drag measurement device was used to systematically analyze the mechanisms underlying the drag-reduction performance of these biomimetic pit structures.The device incorporates a servomotor,ball screw linkage,and high-precision tension sensor,enabling real-time and accurate detection of fluid drag forces.It effectively overcomes the limitations of traditional indirect measurement methods,including dynamic response lag and insufficient accuracy.Experimental results demonstrate that the hydrophobic small-pit fabric(4^(#))achieves an 84% drag reduction at 400 mm/s,outperforming the control sample(warp-knitted fabric 7^(#)).This significant reduction is attributed to the Cassie state established on the hydrophobic surface,which substantially decreases viscous drag and the microvortices generated by the pit structures,which delay flow separation and effectively minimize pressure drag.Furthermore,small-pit fabrics demonstrate a drag reduction rate 26% to 50% higher than that of large-pit structures,highlighting the critical importance of matching the pit scale to the thickness of the near-wall viscous sublayer for optimal drag reduction.This study establishes a theoretical foundation for the biomimetic design of high-performance drag-reduction swimsuits.The developed drag-measuring device also provides a standardized experimental platform for hydrodynamic studies of flexible materials,supporting a shift from empirical design methodologies to theory-driven approaches in drag-reduction technology and exhibiting significant potential for future advancements.
文摘When the 2025 Intertextile Apparel Fabrics Exhibition(Autumn/Winter)was held in Shanghai,more than 3,700 top exhibitors from 26 countries and regions around the world participated.From September 2nd to 4th,the 2025"Keqiao Selected"exhibition shone brightly at the event,showcasing the high-end quality of its products and the innovative strength of its regional brands.
基金Supported by Guangdong Provincial Key-Area Research and Development Program(Grant No.2023B0101200014)Guangdong Provincial Natural Science Foundation(Grant No.2024A1515010440).
文摘Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materials commonly used to manufacture MNs include silicon,polymers,ceramics and metals.Metallic MNs(MMNs)have drawn significant attention owing to its superior mechanical properties,machinability,and biocompatibility.This paper is a state-of-the-art review of the structure,fabrication technologies,and applications of MMNs.According to the relative position of the axis of MN and the plane of the substrate,MMNs can be divided into in-plane and out-of-plane.Solid,hollow,coated and porous MMNs are also employed to characterize their internal and surface structures.Until now,numerous fabrication technologies,including cutting tool machining,non-traditional machining,etching,hot-forming,and additive manufacturing,have been used to fabricate MMNs.The recent advances in the application of MMNs in drug delivery,disease diagnosis,and cosmetology are also discussed in-depth.Finally,the shortcomings in the fabrication and application of MMNs and future directions for development are highlighted.
基金Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project)(2021CXGC011001)Huafon Microfibre(Jiangsu)Co.Ltd.(2021120011000234)+1 种基金Textile Vision Basic Research Program(J202306)China Postdoctoral Science Foundation(No.2023M732103).
文摘The shortage of freshwater has become a global challenge,exacerbated by global warming and the rapid growth of the world’s population.Researchers across various fields have made numerous attempts to efficiently collect freshwater for human use.These efforts include seawater desalination through reverse osmosis or distillation,sewage treatment technologies,and atmospheric water harvesting.However,after thoroughly exploring traditional freshwater harvesting methods,it has become clear that bio-inspired fog harvesting technology offers new prospects due to its unique advantages of efficiency and sustainability.This paper systematically introduces the current principles of fog harvesting and wettability mechanism found in nature.It reviews the research status of combining bionic fog harvesting materials with textile science from two distinct dimensions.Additionally,it describes the practical applications of fog harvesting materials in agriculture,industry,and domestic water use,analyzes their prospects and feasibility in engineering projects,discusses potential challenges in practical applications,and envisions future trends and directions for the development of these materials.
文摘The Lenzing Group,a leading supplier of regenerated cellulosic fibers for the textile and nonwovens industries,has unveiled innov ative fabric blends that address one of fashion's most persistent circularity challenges:maintaining premium quality while incorporating significant recycled dontent.Through strategic manufacturing partnerships,Lenzing has successfully demonstrated how its responsibly sourlced and resource-efficiently produced TENCEL Im Lyocell fibers transform the unpredictable quality of mechanically recycled natural fibers into consistent,commercially-viable fabrics.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)(Project Nos.RS-2024-00438551,30%,2022-11220701,30%,2021-0-01816,30%)the National Research Foundation of Korea(NRF)grant funded by the Korean Government(Project No.RS-2023-00208460,10%).
文摘Theproliferation of Internet of Things(IoT)devices introduces substantial security challenges.Currently,privacy constitutes a significant concern for individuals.While maintaining privacy within these systems is an essential characteristic,it often necessitates certain compromises,such as complexity and scalability,thereby complicating management efforts.The principal challenge lies in ensuring confidentiality while simultaneously preserving individuals’anonymity within the system.To address this,we present our proposed architecture for managing IoT devices using blockchain technology.Our proposed architecture works on and off blockchain and is integrated with dashcams and closed-circuit television(CCTV)security cameras.In this work,the videos recorded by the dashcams and CCTV security cameras are hashed through the InterPlanetary File System(IPFS)and this hash is stored in the blockchain.When the accessors want to access the video,they must pass through multiple authentications which include web token authentication and verifiable credentials,to mitigate the risk of malicious users.Our contributions include the proposition of the framework,which works on the single key for every new video,and a novel chaincode algorithm that incorporates verifiable credentials.Analyses are made to show the system’s throughput and latency through stress testing.Significant advantages of the proposed architecture are shown by comparing them to existing schemes.The proposed architecture features a robust design that significantly enhances the security of blockchain-enabled Internet of Things(IoT)deviceswhile effectively mitigating the risk of a single point of failure,which provides a reliable solution for security concerns in the IoT landscape.Our future endeavors will focus on scaling the system by integrating innovative methods to enhance security measures further.
基金Youth Foundation of Hebei Province Department of Education Fund,China(No.QN2023090)Opening Project of Textile Ecological Dyeing and Finishing Key Laboratory of Sichuan Province(Chengdu Textile College),China(No.2024DF-AO2)Innovation and Entrepreneurship Training Program for College Students,China(No.202410082023)。
文摘Aiming to solve the problem of large discharge and severe pollution of reactive dyeing wastewater for wool fabrics,peroxodisulfate(SPS)was used for the degradation and recycling of dyeing wastewater containing reactive dye Lanasol Red CE.The process of degrading the reactive dye was determined by using the dye residual rate as the evaluation index.The feasibility of reactive dyeing of wool fabrics using recycled dyeing wastewater was confirmed by measuring the dye uptake,exhaustion and fixation rates,as well as color parameters and fastness of the dyed fabrics.The results showed that the appropriate conditions for degrading Lanasol Red CE were 0.2 g/L SPS,an initial pH value of 3 and 100℃for 30 min.Under these conditions,the dye degradation rate was as high as 93.14%.When the recycled dyeing wastewater was used for dyeing of wool fabrics,the exhaustion rate of Lanasol Red CE exceeded 99%,and the fixation rate was higher than that achieved by the conventional dyeing process.Under the same dyeing conditions,the recycled-dyed fabrics appeared darker.When the number of cycles was fewer than five,the effect on color fastness was not obvious.Although the color fastness to rubbing and washing of the fabrics dyed in the 10th cycle decreased by half a grade and 1 grade,respectively,compared to that of the fabrics dyed with the conventional dyeing process,they still met the production requirements.