The elimination of the vertical tail in tailless aircraft results in a significant decrease in heading static stability,causing substantial coupling among the three control channels.In addition,in specific operational...The elimination of the vertical tail in tailless aircraft results in a significant decrease in heading static stability,causing substantial coupling among the three control channels.In addition,in specific operational scenarios,the tailless aircraft is prone to electromagnetic interference,leading to the generation of high-frequency noise and consequently compromising their control performance.To address these issues,a decoupling control method based on a fractional-order error extended state observer(FOEESO)is proposed.A nonlinear model of a tailless aircraft with thrust vectoring capabilities is first developed.The decoupling control design for the three control channels is then implemented using FOEESO,with the asymptotic convergence conditions outlined.The proposed method is evaluated through simulations and compared to coupled control and linear extended state observer(LESO)techniques.Numerical simulations demonstrate that the FOEESO-based control methodology achieves effective decoupling,exhibiting 6.9%and 11.7%reductions in integral absolute error(IAE)relative to LESO under nominal operational conditions and critical fault scenarios,respectively.These improvements thereby highlight FOEESO’s capability to enhance closed-loop stability and tracking precision in tailless aircraft control systems.展开更多
Planar positioning systems are widely utilized in micro and nano applications.The challenges in modeling and control of XYΘflexure-based mechanisms include hysteresis of the piezoelectric actuators,couplings among th...Planar positioning systems are widely utilized in micro and nano applications.The challenges in modeling and control of XYΘflexure-based mechanisms include hysteresis of the piezoelectric actuators,couplings among the input axes,and coupled linear and angular motions of the end effector.This paper presents an inverse hysteresis-coupling hybrid model to account for such hysteresis and couplings.First,a specially designed kinematic chain is adopted to transfer the pose of the end effector into the linear motions at three prismatic joints.Second,an inverse hysteresis-coupling hybrid model is developed to linearize and decouple the system via a multilayer feedforward neural network.A fractional-order PID controller is also integrated to improve the motion accuracy of the overall system.Experimental results demonstrate that the proposed method can accurately control the motion of the end effector with improved accuracy and robustness.展开更多
A control strategy of repetitive control without inductorance decoupling was proposed to address the problem of high total harmonic distortion(THD)rate of the network-side current caused by the reduced stability of th...A control strategy of repetitive control without inductorance decoupling was proposed to address the problem of high total harmonic distortion(THD)rate of the network-side current caused by the reduced stability of the rectifier module of the DC charging pile under weak grid as well as the dead zone and nonlinearity of switching devices during charging.Firstly,the parallel repetitive control was constructed in the inner current loop,and the proportional-integral(PI)+repetitive controller based on parallel structure was designed.For system compensation,a second-order low-pass filter was selected to correct the system,and the network-side current harmonics were actively suppressed without increasing the filtering device,which effectively improves the quality of grid-connected current.Secondly,based on the synthetic vector method,the controller parameters were designed to realize the elimination of main pole by establishing two synchronous rotation coordinate system vector differential equations,so as to realize the inductanceless decoupling to cope with the influence of network-side inductance fluctuation on the stability of the control system under weak grid.By theoretical analysis and simulation,the proposed control strategy was embedded into the self-developed digital signal processor for the rectifier module of DC charging pile,simulated dynamic and steady-state operation experiments were conducted,and comparative analysis was performed to prove the feasibility of the proposed control strategy.展开更多
Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages an...Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation forc...The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.展开更多
The precision of profile and thickness is the most important target for wide strip rolling,but the coupling of profile control and thickness control is ignored in rolling schedule,which holds down the simultaneous qua...The precision of profile and thickness is the most important target for wide strip rolling,but the coupling of profile control and thickness control is ignored in rolling schedule,which holds down the simultaneous quality improvement of profile and thickness.A cross-coupled process control model for combined shape and gauge control was developed on the basis of the fact that both controls for profile and thickness are realized by controlling the rolling gap.A dynamic decoupling controller was then proposed to decouple the model.Both the simulation results and the online production data are valid and ensure the quality of the decoupling controller.展开更多
In order to make the static state feedback nonlinear decoupling control law for a kind of missile to be easy for implementation in practice, an improvement is discussed. The improvement method is to introduce a BP neu...In order to make the static state feedback nonlinear decoupling control law for a kind of missile to be easy for implementation in practice, an improvement is discussed. The improvement method is to introduce a BP neural network to approximate the decoupling control laws which are designed for different aerodynamic characteristic points, so a new decoupling control law based on BP neural network is produced after the network training. The simulation results on an example illustrate the approach obtained feasible and effective.展开更多
To better understand the twin-roll casting process,based on the analysis of the solidification phenomenon,the geometry shape of the molten metal pool,the continuity of metal and the balance of energy and momentum,five...To better understand the twin-roll casting process,based on the analysis of the solidification phenomenon,the geometry shape of the molten metal pool,the continuity of metal and the balance of energy and momentum,five critical partial equations were established separately including the equations of pool level,solidification process,roll separating force,roll gap and casting speed.Meanwhile,to obtain a uniform sheet thickness and keep a constant roll separating force,a decoupling control model was built on the perturbation method to eliminate the interference of process parameters.The simulation results show that the control model is valuable to quickly and accurately determine the control parameters.Moreover,Mg alloy sheets with high quality were cast by applying this model.展开更多
In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six de...In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.展开更多
Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration iso...Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration isolation platform with eight pneumatic actuators are investigated. Owing to the symmetric configuration design of the platform, the coupling among different channels is greatly weakened. When the payload's principal axes of inertia parallel to the platform's axes of symmetry and the payload's center of mass is at the extension line of the platform's central axis, the motion can be decomposed into two independent single-input single-output channels and two independent two-input two-output subsystems. The second-order subsystems are decoupled further with the simultaneous matrix diagonalization. Thus a decoupling control strategy is developed. Effectiveness of the decoupling approach is verified through experiments of the platform, and the experimental results show that vibrations of the platform are attenuated obviously owing to the active control.展开更多
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
A novel method of incorporating generalized predictive control (GPC) algorithms based on quantitative feedback theory (QFT) principles is proposed for solving the feedback control problem of the highly uncertain and c...A novel method of incorporating generalized predictive control (GPC) algorithms based on quantitative feedback theory (QFT) principles is proposed for solving the feedback control problem of the highly uncertain and cross-coupling plants. The quantitative feedback theory decouples the multi-input and multi-output (MIMO) plant and is also used to reduce the uncertainties of the system, stabilize the system, and achieve tracking performance of the system to a certain extent. Single-input and single-output (SISO) generalized predictive control is used to achieve performance with higher performance. In GPC, the model is identified on-line, which is based on the QFT input and the plant output signals. The simulation results show that the performance of the system is superior to the performance when only QFT is used for highly uncertain MIMO plants.展开更多
A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic co...A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.展开更多
Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and different...Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.展开更多
Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimat...Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.展开更多
Electromagnetic formation flight (EMFF) leverages electromagnetic force to control the relative position of satellites. EMFF offers a promising alternative to traditional propellant-based spacecraft flight formation...Electromagnetic formation flight (EMFF) leverages electromagnetic force to control the relative position of satellites. EMFF offers a promising alternative to traditional propellant-based spacecraft flight formation. This novel strategy is very attractive since it does not consume fuel. Due to the highly coupled nonlinearity of electromagnetic force, it is difficult to individually design a controller for one satellite without considering others, which poses challenges to communications. This paper is devoted to decoupling control of EMFF, including regulations, constraints and con- troller design. A learning-based adaptive sliding mode decoupling controller is analyzed to illustrate the problem of existing results, and input rate saturation is introduced to guarantee the validity of frequency division technique. Through transformation, the imposed input rate saturation is con- verted to state and input constraints. A linear matrix inequalities (LMI)-based robust optimal con- trol method can then be used and improved to solve the transformed problem. Simulation results are presented to demonstrate the effectiveness of the proposed decoupling control.展开更多
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis...The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.展开更多
Many industrial processes have compositive complexities including multivariable, strong coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable adaptive decoupling control with...Many industrial processes have compositive complexities including multivariable, strong coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable adaptive decoupling control with neural networks, this paper presents a multivariable neural networkbased decoupling control algorithm. This control algorithm is integrated with distributed control technique and intelligent control technique, and a three-leveled intelligent decoupling control system consisting of basic control level, coordinating control level, and management and decision level is developed. The configuration and function of the control system are discussed in detail. This system has been successfully applied in ball mill pulverizing systems of 200MW power units, and remarkable benefits have been obtained.展开更多
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementati...A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.展开更多
文摘The elimination of the vertical tail in tailless aircraft results in a significant decrease in heading static stability,causing substantial coupling among the three control channels.In addition,in specific operational scenarios,the tailless aircraft is prone to electromagnetic interference,leading to the generation of high-frequency noise and consequently compromising their control performance.To address these issues,a decoupling control method based on a fractional-order error extended state observer(FOEESO)is proposed.A nonlinear model of a tailless aircraft with thrust vectoring capabilities is first developed.The decoupling control design for the three control channels is then implemented using FOEESO,with the asymptotic convergence conditions outlined.The proposed method is evaluated through simulations and compared to coupled control and linear extended state observer(LESO)techniques.Numerical simulations demonstrate that the FOEESO-based control methodology achieves effective decoupling,exhibiting 6.9%and 11.7%reductions in integral absolute error(IAE)relative to LESO under nominal operational conditions and critical fault scenarios,respectively.These improvements thereby highlight FOEESO’s capability to enhance closed-loop stability and tracking precision in tailless aircraft control systems.
基金supported in part by the Open Fund of State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment,Guangdong University of Technology(Grant No.JMDZ2021007)in part by the Guangdong International Cooperation Program of Science and Technology(Grant No.2022A0505050078).
文摘Planar positioning systems are widely utilized in micro and nano applications.The challenges in modeling and control of XYΘflexure-based mechanisms include hysteresis of the piezoelectric actuators,couplings among the input axes,and coupled linear and angular motions of the end effector.This paper presents an inverse hysteresis-coupling hybrid model to account for such hysteresis and couplings.First,a specially designed kinematic chain is adopted to transfer the pose of the end effector into the linear motions at three prismatic joints.Second,an inverse hysteresis-coupling hybrid model is developed to linearize and decouple the system via a multilayer feedforward neural network.A fractional-order PID controller is also integrated to improve the motion accuracy of the overall system.Experimental results demonstrate that the proposed method can accurately control the motion of the end effector with improved accuracy and robustness.
基金supported by National Natural Science Foundation of China(No.61903291)Shaanxi Province Key R&D Program(No.2022GY-134)。
文摘A control strategy of repetitive control without inductorance decoupling was proposed to address the problem of high total harmonic distortion(THD)rate of the network-side current caused by the reduced stability of the rectifier module of the DC charging pile under weak grid as well as the dead zone and nonlinearity of switching devices during charging.Firstly,the parallel repetitive control was constructed in the inner current loop,and the proportional-integral(PI)+repetitive controller based on parallel structure was designed.For system compensation,a second-order low-pass filter was selected to correct the system,and the network-side current harmonics were actively suppressed without increasing the filtering device,which effectively improves the quality of grid-connected current.Secondly,based on the synthetic vector method,the controller parameters were designed to realize the elimination of main pole by establishing two synchronous rotation coordinate system vector differential equations,so as to realize the inductanceless decoupling to cope with the influence of network-side inductance fluctuation on the stability of the control system under weak grid.By theoretical analysis and simulation,the proposed control strategy was embedded into the self-developed digital signal processor for the rectifier module of DC charging pile,simulated dynamic and steady-state operation experiments were conducted,and comparative analysis was performed to prove the feasibility of the proposed control strategy.
文摘Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
文摘The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.
基金Item Sponsored by National Significant Technical Equipment Research and Development Project of 10th Five-Year-Plan of China(ZZ02-13B-03-03)
文摘The precision of profile and thickness is the most important target for wide strip rolling,but the coupling of profile control and thickness control is ignored in rolling schedule,which holds down the simultaneous quality improvement of profile and thickness.A cross-coupled process control model for combined shape and gauge control was developed on the basis of the fact that both controls for profile and thickness are realized by controlling the rolling gap.A dynamic decoupling controller was then proposed to decouple the model.Both the simulation results and the online production data are valid and ensure the quality of the decoupling controller.
文摘In order to make the static state feedback nonlinear decoupling control law for a kind of missile to be easy for implementation in practice, an improvement is discussed. The improvement method is to introduce a BP neural network to approximate the decoupling control laws which are designed for different aerodynamic characteristic points, so a new decoupling control law based on BP neural network is produced after the network training. The simulation results on an example illustrate the approach obtained feasible and effective.
基金financial support from the Fundamental Research Funds of Anshan Municipal Government
文摘To better understand the twin-roll casting process,based on the analysis of the solidification phenomenon,the geometry shape of the molten metal pool,the continuity of metal and the balance of energy and momentum,five critical partial equations were established separately including the equations of pool level,solidification process,roll separating force,roll gap and casting speed.Meanwhile,to obtain a uniform sheet thickness and keep a constant roll separating force,a decoupling control model was built on the perturbation method to eliminate the interference of process parameters.The simulation results show that the control model is valuable to quickly and accurately determine the control parameters.Moreover,Mg alloy sheets with high quality were cast by applying this model.
基金supported by the National Natural Science Foundation of China(61973175,61973172)。
文摘In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.
文摘Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration isolation platform with eight pneumatic actuators are investigated. Owing to the symmetric configuration design of the platform, the coupling among different channels is greatly weakened. When the payload's principal axes of inertia parallel to the platform's axes of symmetry and the payload's center of mass is at the extension line of the platform's central axis, the motion can be decomposed into two independent single-input single-output channels and two independent two-input two-output subsystems. The second-order subsystems are decoupled further with the simultaneous matrix diagonalization. Thus a decoupling control strategy is developed. Effectiveness of the decoupling approach is verified through experiments of the platform, and the experimental results show that vibrations of the platform are attenuated obviously owing to the active control.
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in Education Ministry (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20050055013).
文摘A novel method of incorporating generalized predictive control (GPC) algorithms based on quantitative feedback theory (QFT) principles is proposed for solving the feedback control problem of the highly uncertain and cross-coupling plants. The quantitative feedback theory decouples the multi-input and multi-output (MIMO) plant and is also used to reduce the uncertainties of the system, stabilize the system, and achieve tracking performance of the system to a certain extent. Single-input and single-output (SISO) generalized predictive control is used to achieve performance with higher performance. In GPC, the model is identified on-line, which is based on the QFT input and the plant output signals. The simulation results show that the performance of the system is superior to the performance when only QFT is used for highly uncertain MIMO plants.
基金supported by the Aeronautical Science Foun-dation of China(No.2012XX51043)‘‘Fanzhou’’Youth Scientific Funds of China(No.20100504)
文摘A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.
基金Project(61174132) supported by the National Natural Science Foundation of ChinaProject(09JJ6098) supported by the Natural Science Foundation of Hunan Province, China
文摘Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200), and the Hi-Tech Research and Devel-opment Program (863) of China (No. 2002AA412010)
文摘Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.
基金supported by the Innovative Team Program of the National Natural Science Foundation of China (No. 61021002)
文摘Electromagnetic formation flight (EMFF) leverages electromagnetic force to control the relative position of satellites. EMFF offers a promising alternative to traditional propellant-based spacecraft flight formation. This novel strategy is very attractive since it does not consume fuel. Due to the highly coupled nonlinearity of electromagnetic force, it is difficult to individually design a controller for one satellite without considering others, which poses challenges to communications. This paper is devoted to decoupling control of EMFF, including regulations, constraints and con- troller design. A learning-based adaptive sliding mode decoupling controller is analyzed to illustrate the problem of existing results, and input rate saturation is introduced to guarantee the validity of frequency division technique. Through transformation, the imposed input rate saturation is con- verted to state and input constraints. A linear matrix inequalities (LMI)-based robust optimal con- trol method can then be used and improved to solve the transformed problem. Simulation results are presented to demonstrate the effectiveness of the proposed decoupling control.
基金supported by the National Key Research and Development Program of China(2022YFC2203700).
文摘The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.
基金Supported by National Basic Research Program of P.R.China (2002CB312201) and National High-Tech Research and Development Program of P.R.China (2004AA412030)
文摘Many industrial processes have compositive complexities including multivariable, strong coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable adaptive decoupling control with neural networks, this paper presents a multivariable neural networkbased decoupling control algorithm. This control algorithm is integrated with distributed control technique and intelligent control technique, and a three-leveled intelligent decoupling control system consisting of basic control level, coordinating control level, and management and decision level is developed. The configuration and function of the control system are discussed in detail. This system has been successfully applied in ball mill pulverizing systems of 200MW power units, and remarkable benefits have been obtained.
基金The National Natural Science Foundation of China(No.51576041,51506029)
文摘A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.