Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r...Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.展开更多
Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigati...Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petrolife...The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016).展开更多
The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimenta...The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.展开更多
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co...Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.展开更多
Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate ...Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.展开更多
Fujian Baiyuan Machinery Co.,Ltd.was established in 2002 with a registered capital of 100 million yuan.It is the chairman enterprise of"China Textile Machinery Association".This national high-tech enterprise...Fujian Baiyuan Machinery Co.,Ltd.was established in 2002 with a registered capital of 100 million yuan.It is the chairman enterprise of"China Textile Machinery Association".This national high-tech enterprise covers an area of 58000 square meters and integrates,service,software development.展开更多
Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and ...Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and a profession that now bridges two nations.From a university student in Thailand puzzled by Chinese dialogue to a Thai language lecturer in China influencing the next generation of Thailand-China communicators,Wang’s journey is a story of resilience,romance,and responsibility.展开更多
Nujiang integrates culture and tourism to create new opportunities for development.Nestled deep within the Nujiang Grand Canyon,unique ethnic cultures are driving rural revitalisation in Yunnan Province’s Nujiang Lis...Nujiang integrates culture and tourism to create new opportunities for development.Nestled deep within the Nujiang Grand Canyon,unique ethnic cultures are driving rural revitalisation in Yunnan Province’s Nujiang Lisu Autonomous Prefecture.Relying on its rich intangible cultural heritage,the region integrates agriculture,culture,and tourism to create new opportunities for once-isolated communities.展开更多
At this exhibition,as global expert in jacquard weaving solutions,Jiangsu S&S Intelligent Science And Technology Co.,Ltd.focuses on launching the SLX cam series jacquard machines.This equipment adopts servo direct...At this exhibition,as global expert in jacquard weaving solutions,Jiangsu S&S Intelligent Science And Technology Co.,Ltd.focuses on launching the SLX cam series jacquard machines.This equipment adopts servo direct-drive technology,which can reduce energy consumption by over 20%compared with traditional motor systems,and achieves highprecision control,efficient energy utilization,intelligent control.Precision process design The SLX cam jacquard machine adopts optimized shedding cam curve,featuring long effective shedding time and more stable operation.The low-center-of-gravity design minimizes the vibration and noise of the machine frame,while the camshaft box body formed by one-time processing ensures extremely high mounting accuracy of the conjugate cam.The equipment adopts a fully sealed design,which has good dust-proof effect and attractive appearance.The easily adjustable sensor disc assembly facilitates maintenance.These design details reflect S&S's pursuit of exquisite product quality.展开更多
In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p...In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.展开更多
In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the ou...In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the outer layer has no inlaid metal wires. Stress, strain and temperature field of DLRF were calculated with ANSYS finite element analysis (FEA) software, FL of DLRF RW was also computed with fracture mechanics fatigue theory. The results of computation indicate that the heat generated in RW's rubber flange (RF) can be reduced by the use of DLRF, and the FL of RW can be increased without affecting the mechanical intensity of RW.展开更多
The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive mod...The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism of fabric composites.展开更多
The principle of a CAD method of converting the pre-designed figures in image form into complex dobby weaves with the appearances similar to the original figures is mainly introduced in this paper. A few designed weav...The principle of a CAD method of converting the pre-designed figures in image form into complex dobby weaves with the appearances similar to the original figures is mainly introduced in this paper. A few designed weaves by the created CAD system are also given as examples of the practical application in the area of complex dobby weave designing.展开更多
Novel micromechanical curved beam models were presented for predicting the ten- sile and shear moduli of triaxial weave fabric (TWF) composites by considering the interactions between the triaxial yarns of 0° a...Novel micromechanical curved beam models were presented for predicting the ten- sile and shear moduli of triaxial weave fabric (TWF) composites by considering the interactions between the triaxial yarns of 0° and ±60° The triaxial yarns in micromechanieal representative unit cell (RUC) were idealized as curved beams with a path depicted using the sinusoidal shape functions, and the tensile and shear moduli of TWF composites were derived by means of the strain energy approach founded on micromechanics. In order to validate the new models, the predictions were compared with the experimental data from literature. It was shown that the predictions from the new model agree well with the experimental results. Using these models, the tensile and shear properties of TWF composites could be predicted based only on the properties of basic woven fabric.展开更多
The aim of the study was to develop actarit double-layered osmotic pump tablets to overcome the weak points of actarit common tablets, such as short half-life and large plasma concentration fluctuations. Single factor...The aim of the study was to develop actarit double-layered osmotic pump tablets to overcome the weak points of actarit common tablets, such as short half-life and large plasma concentration fluctuations. Single factor experiment and orthogonal test were applied to optimize the formulation;the pharmacokinetic study was performed in beagle dogs adopting actarit common tablets as reference tablets. The optimal formulation was as follows: drug layer: 150 mg actarit, 240 mg PEO-N80, 50 mg NaCl;push layer: 140 mg PEO-WSR303, 20 mg NaCl;coating solution: 30 g cellulose acetate and 6 g PEG 4000 in 1000 ml 94% acetone solution, 60 mg coating weight gain. The pharmacokinetic study showed that T max was prolonged by the contrast of commercial common tablets with constant drug release rate, but the bioavailability was equivalent. And a good in vivo –in vitro correlation of the actarit osmotic pump tablets was also established. The designed actarit osmotic pump tablets can be applied for rheumatoid arthritis, proposing a promising replacement for the marked common products.展开更多
Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld se...Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld seam, the width difference o f each layer and the forming mechanism are analyzed. Results show that the bottom layer ( Layer 1 ) has the widest HAZ and the smallest fluctuation, which reaches 1 200 |jLm. HAZ width o f layer 2 to 5 is relatively narrower which is basically below 600 jjim, while the amplitude fluctuation is greater. The main reason lies in the welding path. The long straight welding without weave causes the base metal near the groove fully melts which causes by the long straight welding without weave, while welding with weave leads to the uneven and inadequate melting of metal near groove.展开更多
AIM To investigate the efficacy of double-layered covered stent in the treatment of malignant oesophageal obstructions.METHODS A systematic review and meta-analysis was performed following the PRISMA process. Pub Med(...AIM To investigate the efficacy of double-layered covered stent in the treatment of malignant oesophageal obstructions.METHODS A systematic review and meta-analysis was performed following the PRISMA process. Pub Med(Medline),EMBASE(Excerpta Medical Database),AMED(Allied and Complementary medicine Database),Scopus and online content,were searched for studies reporting on the Ni Ti-S polyurethane-covered double oesophageal stent for the treatment of malignant dysphagia. Weighted pooled outcomes were synthesized with a random effects model to account for clinical heterogeneity. All studies reporting the outcome of palliative management of dysphagia due to histologically confirmed malignant oesophageal obstruction using double-layered covered nitinol stent were included. The level of statistical significance was set at α = 0.05.RESULTS Six clinical studies comprising 250 patients in total were identified. Pooled technical success of stent insertion was 97.2%(95%CI: 94.8%-98.9%; I2 = 5.8%). Pooled complication rate was 27.6%(95%CI: 20.7%-35.2%; I2 = 41.9%). Weighted improvement of dysphagia on a scale of 0-5 scoring system was-2.00 [95%CI:-2.29%-(-1.72%); I2 = 87%]. Distal stent migration was documented in 10 out of the 250 cases examined.Pooled stent migration rate was 4.7%(95%CI: 2.5%-7.7%; I2 = 0%). Finally,tumour overgrowth was reported in 34 out of the 250 cases with pooled rate of tumour overgrowth of 11.2%(95%CI: 3.7%-22.1%; I2 = 82.2%). No funnel plot asymmetry to suggest publication bias(bias = 0.39,P = 0.78). In the sensitivity analysis all results were largely similar between the fixed and random effects models.CONCLUSION The double-layered nitinol stent provides immediate relief of malignant dysphagia with low rates of stent migration and tumour展开更多
基金National Natural Science Foundation of China(Grant Nos.12172179,11802141 and U2341244)National Natural Science Foundation for Young Scientists of China(Grant No.12202207)+3 种基金China Postdoctoral Science Foundation(Grant No.2022M711623)Natural Science Foundation of Jiangsu Province(Grant No.BK20220968)Open Funds for Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202201)Open Funds for Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(Grant No.22kfgk03)。
文摘Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074213 and 11574108)the National Key R&D Program of China(Grant No.2022YFA1403103)+2 种基金the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Province(Grant No.ZR2023MA082)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金supports from the International Continental Scientific Drilling Programfunded by the National Natural Science Foundation of China(Grant Nos.41790453,41472304,42102129,42102135 and 41972313)+2 种基金Natural Science Foundation of Jilin Province(Grant No.20170101001JC)the National Key Research&Development Program of China(Grant No.2019YFC0605402)China Geological Survey(Grant No.DD20189702)。
文摘The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016).
基金supported by Huzhou Natural Science Foundation Project(Nos.2022YZ04 and 2022YZ21)S&T Special Program of Huzhou(No.2023GZ03)National Natural Science Foundation of China(No.52172184)。
文摘The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.
基金Fund by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No.2018YFD1101002-03)。
文摘Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.
基金the National Science and Technology Major Project(Grant No.2017-VII-0011-0106)Natural Science Foundation of Heilongjiang Province(Grant No.ZD2019A001).
文摘Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.
文摘Fujian Baiyuan Machinery Co.,Ltd.was established in 2002 with a registered capital of 100 million yuan.It is the chairman enterprise of"China Textile Machinery Association".This national high-tech enterprise covers an area of 58000 square meters and integrates,service,software development.
文摘Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and a profession that now bridges two nations.From a university student in Thailand puzzled by Chinese dialogue to a Thai language lecturer in China influencing the next generation of Thailand-China communicators,Wang’s journey is a story of resilience,romance,and responsibility.
文摘Nujiang integrates culture and tourism to create new opportunities for development.Nestled deep within the Nujiang Grand Canyon,unique ethnic cultures are driving rural revitalisation in Yunnan Province’s Nujiang Lisu Autonomous Prefecture.Relying on its rich intangible cultural heritage,the region integrates agriculture,culture,and tourism to create new opportunities for once-isolated communities.
文摘At this exhibition,as global expert in jacquard weaving solutions,Jiangsu S&S Intelligent Science And Technology Co.,Ltd.focuses on launching the SLX cam series jacquard machines.This equipment adopts servo direct-drive technology,which can reduce energy consumption by over 20%compared with traditional motor systems,and achieves highprecision control,efficient energy utilization,intelligent control.Precision process design The SLX cam jacquard machine adopts optimized shedding cam curve,featuring long effective shedding time and more stable operation.The low-center-of-gravity design minimizes the vibration and noise of the machine frame,while the camshaft box body formed by one-time processing ensures extremely high mounting accuracy of the conjugate cam.The equipment adopts a fully sealed design,which has good dust-proof effect and attractive appearance.The easily adjustable sensor disc assembly facilitates maintenance.These design details reflect S&S's pursuit of exquisite product quality.
基金The Special Project of the Ministry of Construction ofChina (No.20060909).
文摘In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.
文摘In order to increase the fatigue life (FL) of road wheels (RW), a kind of double layer rubber flange (DLRF) is put forward. It consists of two layers of rubber, where metal wires are laid in the inner layer and the outer layer has no inlaid metal wires. Stress, strain and temperature field of DLRF were calculated with ANSYS finite element analysis (FEA) software, FL of DLRF RW was also computed with fracture mechanics fatigue theory. The results of computation indicate that the heat generated in RW's rubber flange (RF) can be reduced by the use of DLRF, and the FL of RW can be increased without affecting the mechanical intensity of RW.
基金supported by National Defense Foundation of China
文摘The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism of fabric composites.
文摘The principle of a CAD method of converting the pre-designed figures in image form into complex dobby weaves with the appearances similar to the original figures is mainly introduced in this paper. A few designed weaves by the created CAD system are also given as examples of the practical application in the area of complex dobby weave designing.
基金Project supported by the National Natural Science Foundation of China(Nos.51375033 and 51405006)
文摘Novel micromechanical curved beam models were presented for predicting the ten- sile and shear moduli of triaxial weave fabric (TWF) composites by considering the interactions between the triaxial yarns of 0° and ±60° The triaxial yarns in micromechanieal representative unit cell (RUC) were idealized as curved beams with a path depicted using the sinusoidal shape functions, and the tensile and shear moduli of TWF composites were derived by means of the strain energy approach founded on micromechanics. In order to validate the new models, the predictions were compared with the experimental data from literature. It was shown that the predictions from the new model agree well with the experimental results. Using these models, the tensile and shear properties of TWF composites could be predicted based only on the properties of basic woven fabric.
文摘The aim of the study was to develop actarit double-layered osmotic pump tablets to overcome the weak points of actarit common tablets, such as short half-life and large plasma concentration fluctuations. Single factor experiment and orthogonal test were applied to optimize the formulation;the pharmacokinetic study was performed in beagle dogs adopting actarit common tablets as reference tablets. The optimal formulation was as follows: drug layer: 150 mg actarit, 240 mg PEO-N80, 50 mg NaCl;push layer: 140 mg PEO-WSR303, 20 mg NaCl;coating solution: 30 g cellulose acetate and 6 g PEG 4000 in 1000 ml 94% acetone solution, 60 mg coating weight gain. The pharmacokinetic study showed that T max was prolonged by the contrast of commercial common tablets with constant drug release rate, but the bioavailability was equivalent. And a good in vivo –in vitro correlation of the actarit osmotic pump tablets was also established. The designed actarit osmotic pump tablets can be applied for rheumatoid arthritis, proposing a promising replacement for the marked common products.
基金the financial support of the project from Shanghai Municipal Commission of Economy and Informatization (15XI-1-15)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld seam, the width difference o f each layer and the forming mechanism are analyzed. Results show that the bottom layer ( Layer 1 ) has the widest HAZ and the smallest fluctuation, which reaches 1 200 |jLm. HAZ width o f layer 2 to 5 is relatively narrower which is basically below 600 jjim, while the amplitude fluctuation is greater. The main reason lies in the welding path. The long straight welding without weave causes the base metal near the groove fully melts which causes by the long straight welding without weave, while welding with weave leads to the uneven and inadequate melting of metal near groove.
文摘AIM To investigate the efficacy of double-layered covered stent in the treatment of malignant oesophageal obstructions.METHODS A systematic review and meta-analysis was performed following the PRISMA process. Pub Med(Medline),EMBASE(Excerpta Medical Database),AMED(Allied and Complementary medicine Database),Scopus and online content,were searched for studies reporting on the Ni Ti-S polyurethane-covered double oesophageal stent for the treatment of malignant dysphagia. Weighted pooled outcomes were synthesized with a random effects model to account for clinical heterogeneity. All studies reporting the outcome of palliative management of dysphagia due to histologically confirmed malignant oesophageal obstruction using double-layered covered nitinol stent were included. The level of statistical significance was set at α = 0.05.RESULTS Six clinical studies comprising 250 patients in total were identified. Pooled technical success of stent insertion was 97.2%(95%CI: 94.8%-98.9%; I2 = 5.8%). Pooled complication rate was 27.6%(95%CI: 20.7%-35.2%; I2 = 41.9%). Weighted improvement of dysphagia on a scale of 0-5 scoring system was-2.00 [95%CI:-2.29%-(-1.72%); I2 = 87%]. Distal stent migration was documented in 10 out of the 250 cases examined.Pooled stent migration rate was 4.7%(95%CI: 2.5%-7.7%; I2 = 0%). Finally,tumour overgrowth was reported in 34 out of the 250 cases with pooled rate of tumour overgrowth of 11.2%(95%CI: 3.7%-22.1%; I2 = 82.2%). No funnel plot asymmetry to suggest publication bias(bias = 0.39,P = 0.78). In the sensitivity analysis all results were largely similar between the fixed and random effects models.CONCLUSION The double-layered nitinol stent provides immediate relief of malignant dysphagia with low rates of stent migration and tumour