期刊文献+
共找到66,975篇文章
< 1 2 250 >
每页显示 20 50 100
Superconductivity and band topology of double-layer honeycomb structure M_(2)N_(2)(M=Nb,Ta)
1
作者 Jin-Han Tan Na Jiao +2 位作者 Meng-Meng Zheng Ping Zhang Hong-Yan Lu 《Chinese Physics B》 2025年第9期581-587,共7页
Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigati... Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials. 展开更多
关键词 first-principles calculations phonon-mediated superconductivity double-layer honeycomb structure band topology
原文传递
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner 被引量:3
2
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 Shaped charge Chemical vapor deposition TUNGSTEN double-layer charge liner X-ray PENETRATION
在线阅读 下载PDF
Discovery and Significance of the Triassic–Late Paleozoic Double-layered Basement in the Songliao Basin:Based on the Complete Coring Data from ICDP Borehole SK2 被引量:2
3
作者 YANG Zhuolong WANG Pujun +2 位作者 GAO Youfeng GAO Chuancheng TANG Xin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期75-76,共2页
The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petrolife... The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016). 展开更多
关键词 double-layered basement ICDP Triassic and Paleozoic Songliao Basin
在线阅读 下载PDF
基于“PIPE”模式的会展概论专业课程建设和人才培养研究
4
作者 周诗涛 《商展经济》 2025年第14期166-169,共4页
“PIPE”模式的会展概论专业课程建设和人才培养以“小问题—大志向”创新育人思维为连接器,创新设计会展概论专业课程建设方案,通过“课赛训研一体化”的创新实践培养模式,实现创新创业教育与专业内容的深度融合,助力人才培养目标的落... “PIPE”模式的会展概论专业课程建设和人才培养以“小问题—大志向”创新育人思维为连接器,创新设计会展概论专业课程建设方案,通过“课赛训研一体化”的创新实践培养模式,实现创新创业教育与专业内容的深度融合,助力人才培养目标的落实。通过专业课程建设和人才培养,使学生更好地适应社会与区域市场发展需求,为国家实施创新驱动发展战略、促进经济提质增效升级提供更为有力的人才支撑。 展开更多
关键词 会展概论 pipe”模式 专业课程建设 人才培养 综合能力 现代服务业
在线阅读 下载PDF
Double-layered skeleton of Li alloy anchored on 3D metal foam enabling ultralong lifespan of Li anode under high rate 被引量:1
5
作者 Chaohui Wei Zeyu Yao +7 位作者 Jin Ruan Zhicui Song Aijun Zhou Yingze Song Donghuang Wang Jicheng Jiang Xin Wang Jingze Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期479-485,共7页
The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimenta... The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate. 展开更多
关键词 double-layered skeleton Li alloy 3D Metal foam Ultralong lifespan Lithium metal batteries High rate
原文传递
Performance and Application of Double-layered Microcapsule Corrosion Inhibitors
6
作者 余海燕 WANG Yingxiang +2 位作者 WANG Ruizhi HU Lintong WANG Tianlei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期845-853,共9页
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co... Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength. 展开更多
关键词 corrosion inhibitors MICROCAPSULE double-layer structure potentiodynamic polarization curve
原文传递
Explainable machine learning for predicting mechanical properties of hot-rolled steel pipe 被引量:1
7
作者 Jing-dong Li You-zhao Sun +4 位作者 Xiao-chen Wang Quan Yang Guo-dong Liu Hao-tang Qie Feng-xia Li 《Journal of Iron and Steel Research International》 2025年第8期2475-2490,共16页
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an... Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts. 展开更多
关键词 Mechanical property Hot-rolled steel pipe Machine learning Adaptive bandwidth kernel density estimation Shapley additive explanations-based explanation
原文传递
3D dynamic numerical modeling on vibration mitigation efficiency of open trench with horizontal hollow pipes
8
作者 Hu Zhonghua Chen Qingsheng +2 位作者 Xu Changjie Sudip Basack Luo Wenjun 《Earthquake Engineering and Engineering Vibration》 2025年第3期795-809,共15页
Among different existing vibration isolation methods,open trenches is a technique that is commonly used for reducing the transfer of ground vibrations.Despite many benefits of such a technique for isolating ground vib... Among different existing vibration isolation methods,open trenches is a technique that is commonly used for reducing the transfer of ground vibrations.Despite many benefits of such a technique for isolating ground vibrations,its primary disadvantage is its instability and lack of vibration isolation effectiveness apart from the stability of the trenches.To address these concerns,a new technique has been developed by the authors,which includes filling up these trenches with a group of hollow pipes in a specific pattern.This is a novel method for reducing ground vibrations by burying hollow pipes horizontally.Through the use of three-dimensional(3D)finite-element modeling,the effectiveness of such hollow pipes in decreasing ground vibrations generated by harmonic stress excitation on the ground surface was investigated.Compared to open trench and rows of piles,these pipe assemblages have been shown to be very successful in reducing ground vibration transmission while also addressing issues of instability and enhancing vibration isolation efficiency.A 3D dynamic numerical model is constructed in PLAXIS3D,and the findings are validated against earlier publications.Next,a comparison research study is conducted,with its focus between horizontal hollow and vertical pipe piles.Finally,a detailed parametric study is carried out to establish the effect of each of the wave barrier’s architectural,material,and loading elements on its vibration isolation effectiveness.Critical parameters are discovered and tuned to maximize the efficiency of this new technique. 展开更多
关键词 ground vibrations hollow pipe vertical pipe pile vibration isolation
在线阅读 下载PDF
Developments and Prospects in Temperature Control Technique of Loop Heat Pipe for Spacecraft
9
作者 Chuxin Wang Qi Wu +5 位作者 Zenong Fang Chang Liu Guoguang Li Ye Wang Hongxing Zhang Jianyin Miao 《Frontiers in Heat and Mass Transfer》 2025年第4期1261-1280,共20页
With the development of space-based remote sensing and deep space exploration technology,higher standards for temperature stability and uniformity of payloads have been proposed to spacecraft thermal control systems.A... With the development of space-based remote sensing and deep space exploration technology,higher standards for temperature stability and uniformity of payloads have been proposed to spacecraft thermal control systems.As an efficient two-phase heat transfer device with active temperature control capabilities,the loop heat pipe(LHP)can be widely applied in spacecraft thermal control systems to achieve reliable temperature control under various operating modes and complex space thermal environments.This paper analyzes the fundamental theories of thermal switch-controlled,reservoir temperature-controlled,and bypass valve-controlled LHPs.The focus is on the theories and methods of achieving high-precision and high-reliability temperature control via active reservoir temperature control.Novel control techniques in recent years,such as non-condensable gas(NCG)control with a temperature stability of 0.01℃ ,are also briefly introduced as promising approaches to improve LHP performance.The on-orbit performance and characteristics of various LHP temperature control methods are provided and ranked in terms of control precision,energy consumption,complexity,and weight.Thermoelectric cooler(TEC)/electrical heater,as the foundation of reservoir temperature control,can achieve a temperature stability of in space applications under±0.2℃ a wide range of heat load.Microgravity model,control strategy,and operating mode conversion are three optimization directions that would hopefully further expand the application scenario of reservoir temperature control.Specific design principles and challenges for corresponding directions are summarized as guidance for researchers. 展开更多
关键词 Loop heat pipe temperature control SPACECRAFT
在线阅读 下载PDF
Machine learning-based design strategy for weak vibration pipes conveying fluid
10
作者 Tianchang DENG Hu DING +1 位作者 SKITIPORNCHAI Jie YANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1215-1236,共22页
Multi-constrained pipes conveying fluid,such as aircraft hydraulic control pipes,are susceptible to resonance fatigue in harsh vibration environments,which may lead to system failure and even catastrophic accidents.In... Multi-constrained pipes conveying fluid,such as aircraft hydraulic control pipes,are susceptible to resonance fatigue in harsh vibration environments,which may lead to system failure and even catastrophic accidents.In this study,a machine learning(ML)-assisted weak vibration design method under harsh environmental excitations is proposed.The dynamic model of a typical pipe is developed using the absolute nodal coordinate formulation(ANCF)to determine its vibrational characteristics.With the harsh vibration environments as the preserved frequency band(PFB),the safety design is defined by comparing the natural frequency with the PFB.By analyzing the safety design of pipes with different constraint parameters,the dataset of the absolute safety length and the absolute resonance length of the pipe is obtained.This dataset is then utilized to develop genetic programming(GP)algorithm-based ML models capable of producing explicit mathematical expressions of the pipe's absolute safety length and absolute resonance length with the location,stiffness,and total number of retaining clips as design variables.The proposed ML models effectively bridge the dataset with the prediction results.Thus,the ML model is utilized to stagger the natural frequency,and the PFB is utilized to achieve the weak vibration design.The findings of the present study provide valuable insights into the practical application of weak vibration design. 展开更多
关键词 pipe conveying fluid machine learning(ML) pipe design strategy RESONANCE genetic programming(GP) inverse design preserved frequency band(PFB)
在线阅读 下载PDF
Effects of Soil Properties on the Diffusion of Hydrogen-Blended Natural Gas from an Underground Pipe
11
作者 Shiyao Peng Hanwen Zhang +2 位作者 Chong Chai Shilong Xue Xiaobin Zhang 《Fluid Dynamics & Materials Processing》 2025年第5期1099-1112,共14页
The diffusion of hydrogen-blended natural gas(HBNG)from buried pipelines in the event of a leak is typically influenced by soil properties,including porosity,particle size,temperature distribution,relative humidity,an... The diffusion of hydrogen-blended natural gas(HBNG)from buried pipelines in the event of a leak is typically influenced by soil properties,including porosity,particle size,temperature distribution,relative humidity,and the depth of the pipeline.This study models the soil as an isotropic porous medium and employs a CFD-based numerical framework to simulate gas propagation,accounting for the coupled effects of soil temperature and humidity.The model is rigorously validated against experimental data on natural gas diffusion in soil.It is then used to explore the impact of relevant parameters on the diffusion behavior of HBNG under conditions of low leakage flux.The results reveal distinct diffusion dynamics across different soil types:hydrogen(H_(2))diffuses most rapidly in clay,more slowly in sandy soil,and slowest in loam.At the ground surface directly above the leakage point,H_(2)concentrations rise rapidly initially before stabilizing,while at more distant surface locations,the increase is gradual,with delays that grow with distance.In particular,in a micro-leak scenario,characterized by a pipeline buried 0.8 m deep and a leakage velocity of 3.492 m/s,the time required for the H_(2)concentration to reach 1%at the surface,2 m horizontally from the leak source,is approximately 4.8 h for clay,5 h for sandy soil,and 7 h for loam.The time taken for gas to reach the surface is highly sensitive to the burial depth of the pipeline.After 18 h of diffusion,the surface H_(2)molar fraction directly above the leak reaches 3.75%,3.2%,and 2.75%for burial depths of 0.8,1.1,and 1.5 m,respectively,with the concentration inversely proportional to the depth.Soil temperature exerts minimal influence on the overall diffusion rate but slows the rise in H_(2)concentration directly above the leak as temperature increases.Meanwhile,the effect of soil humidity on H_(2)diffusion is negligible. 展开更多
关键词 Hydrogen-blended natural gas CFD soil pipe leakage diffusion
在线阅读 下载PDF
Numerical Simulation of Turbulent Heat Transfer in Concentric Annular Pipes
12
作者 Jinping Xu Zhiyun Wang Mo Yang 《Frontiers in Heat and Mass Transfer》 2025年第4期1151-1163,共13页
In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Ditt... In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Dittus-Boelter equation for circular pipes make it unsuitable for the complex flow induced by the geometry and heat transfer coupling effects in annular pipes.This prevents it from accurately predicting the turbulent heat transfer in concentric annular pipes.This paper used realizableκ–εand low Reynolds number models to conduct numerical simulations of turbulent convective heat transfer in concentric annular pipes and circular pipes.The results indicated that the local heat transfer coefficient and Nusselt number of the inner wall surface of the annular pipe were both higher than those of the outer wall surface.The Darcy resistance coefficient decreased upon increasing the Reynolds number and increased with the inner diameter-to-outer diameter ratio.When using the equivalent diameter as the characteristic scale,the turbulent heat transfer correlation obtained from circular pipes produced significant errors when used to approximate the turbulent convective heat transfer in concentric annular pipes.This error was greater for the inner wall surface,especially when the inner and outer diameters were relatively small,as the Nusselt number error on the inner wall surface reached 60.62%.The error of the Nusselt number on the outer wall surface reached 19.51%. 展开更多
关键词 Turbulent flow realizableκ–ε concentric annular pipe Dittus-Boelter formula
在线阅读 下载PDF
Experimental and numerical study on attenuation of shock waves in ventilation pipes
13
作者 Wenjun Yu Shuxin Deng +5 位作者 Shengyun Chen Bingbing Yu Dongyan Jin Zhangjun Wu Yaguang Sui Huajie Wu 《Defence Technology(防务技术)》 2025年第4期156-168,共13页
With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ... With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ventilation pipes of different structures are investigated by experiments and numerical simulations.Furthermore,for the same structure,the effects of peak pressure and positive pressure time on the attenuation rate are discussed.It is found that the attenuation rate increases with the incident shock wave pressure,and the shock wave attenuation rate tends to reach its limiting value k for the same structure and reasonably short positive pressure time.Under the same conditions,the attenuation rate is calculated using the pressure of the shock wave as follows:diffusion chamber pipe,branch pipe and selfconsumption pipe;the attenuation rate per unit volume is calculated as follows:self-consumption pipe,branch pipe and diffusion chamber pipe.In addition,an easy method is provided to calculate the attenuation rate of the shock wave in single and multi-stage ventilation pipes.Corresponding parameters are provided for various structures,and the margin of error between the formulae and experimental results is within 10%,which is significant for engineering applications. 展开更多
关键词 Hock waves Ventilation pipes Numerical modelling Explosion mechanics
在线阅读 下载PDF
Laser welding of molybdenum socket joint for ultra-high-temperature heat pipes based on niobium alloying
14
作者 Jia-xuan ZHAO Hong-da ZHANG +3 位作者 Lin-jie ZHANG Xiang-dong DING Yuan-jun SUN Guang SUN 《Transactions of Nonferrous Metals Society of China》 2025年第2期511-524,共14页
The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased f... The influence of Ti and Zr,Nb alloying on the microstructures and performance of laser-welded molybdenum socket joints was investigated.Following Nb alloying,the average microhardness of the fusion zone(FZ)increased from HV 194.7 to HV 283.3.Additionally,Nb can react with O to form dispersed Nb_(2)O_(5) along grain boundaries,impeding grain boundary migration and dislocation movement while reducing the content of volatile Mo oxide along these boundaries.The incorporation of Nb in FZ partially inhibits pore defects and enhances joint load-bearing capacity.In comparison to the laser-welded joints without adding Nb(LW),the tensile strength of the laser-welded joints with Nb alloying(LW-Nb)was significantly improved by approximately 69%from 327.5 to 551.7 MPa.Furthermore,the fracture mechanism of the joints transitioned from intergranular fracture to transgranular fracture. 展开更多
关键词 laser welding MOLYBDENUM heat pipe niobium alloying MICROSTRUCTURE performance
在线阅读 下载PDF
Non-planar vibration characteristics and buckling behaviors of two fluid-conveying pipes coupled with an intermediate spring
15
作者 Dali WANG Tianli JIANG +1 位作者 Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1829-1850,共22页
This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted ... This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted to evaluate the effects of spring parameters on the non-planar vibration characteristics and buckling behaviors of the coupled system. The nonlinear governing equations are derived with Hamilton's principle,subsequently discretized through Galerkin's method, and finally numerically solved by the Runge-Kutta algorithm. Based on the linearized equations, an eigenvalue analysis is performed to obtain the coupled frequencies, modal shapes, and critical flow velocities for buckling instability. Quantitative assessments further elucidate the effects of the spring position and stiffness coefficient on the coupled frequencies and critical flow velocities.Nonlinear dynamic analyses reveal the evolution of buckling patterns and bifurcation behaviors between the lateral displacements of the two pipes and the flow velocity. Numerical results indicate that the intermediate spring increases the susceptibility to buckling instability in the out-of-plane direction compared with the in-plane direction. Furthermore, synchronized lateral displacements emerge in both pipes when the flow velocity of one pipe exceeds the critical threshold. This work is expected to provide a theoretical foundation for the stability assessment and vibration analysis in coupled fluid-conveying pipe systems. 展开更多
关键词 coupled fluid-conveying pipe system intermediate spring non-planar vibration buckling behavior
在线阅读 下载PDF
Effect of SurfaceWettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe
16
作者 Wei Zhang Haojie Chen +1 位作者 Kunyu Cheng Yulong Zhang 《Frontiers in Heat and Mass Transfer》 2025年第1期361-381,共21页
The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation secti... The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation section paired with superhydrophilic,superhydrophobic,and hybrid condensation section).The Volume of Fluid(VOF)model was utilized to capture the phase-change process within the PHPs.The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes.The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the PHPs.The overall heat transfer performance of the superhydrophobic surface was significantly improved at low heat flux.Under medium to high heat flux,the superhydrophilic condensation section exhibits a strong oscillation effect and leads to the thickening of the liquid film.In addition,the hybrid surface possesses the heat transfer characteristics of both superhydrophilic and superhydrophobic walls.The hybrid condensation section exhibited the lowest thermal resistance by 0.45 K/W at the heat flux of 10731 W/m^(2).The thermal resistance is reduced by 13.1%and 5.4%,respectively,compared to the superhydrophobic and superhydrophilic conditions.The proposed surface-modification method for achieving highly efficient condensation heat transfer is helpful for the design and operation of device-cooling components. 展开更多
关键词 Pulsating heat pipe surface wettability flow pattern heat transfer enhancement
在线阅读 下载PDF
Centrifuge modelling of permeable pipe pile in consideration of pile driving process, soil consolidation, and axial loading
17
作者 Meijuan Xu Pengpeng Ni Guoxiong Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3861-3871,共11页
Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take... Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take several months.Measures are sought to shorten the drainage path in the ground,and permeable pipe pile is a concept that involves drainage channels at the peak pore pressure locations around the pile circumference.Centrifuge tests were conducted to understand the responses of permeable pipe pile treated ground,experiencing the whole pile driving,soil consolidating,and axially loading process.Results show that the dissipation rate of pore pressures can be improved,especially at a greater depth or at a shorter distance from the pile,since the local hydraulic gradient was higher.Less significant buildup of pore pressures can be anticipated with the use of permeable pipe pile.For this,the bearing capacity of composite foundation with permeable pipe pile can be increased by over 36.9%,compared to the case with normal pipe pile at a specific time period.All these demonstrate the ability of permeable pipe pile in accelerating the consolidation process,mobilizing the bearing capacity of treated ground at an early stage,and minimizing the set-up effect. 展开更多
关键词 Permeable pipe pile Centrifuge modelling Pore pressure buildup CONSOLIDATION Bearing capacity
在线阅读 下载PDF
Challenging in frequent jacking force surge in rock pipe jacking project:A case study in Guanjingkou,China
18
作者 Chao Li Zuliang Zhong +2 位作者 Xinrong Liu Yi Zhang Nanyun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4559-4578,共20页
Previous studies have demonstrated that the surge in jacking force during the Guanjingkou project is caused by the contact conditions of the debris bentonite slurry outside the pipe.Therefore,this paper further system... Previous studies have demonstrated that the surge in jacking force during the Guanjingkou project is caused by the contact conditions of the debris bentonite slurry outside the pipe.Therefore,this paper further systematically investigates the influence of different debris slurry mass ratios(SLRs)and different particle size distributions(PSDs)on the pipe-rock friction characteristics using friction tests.The test results reveal that under the same PSD,an adequate amount of slurry(with an SLR of 1:4)consistently yields the lowest friction coefficient.When the SLR is between 1:2 and 1:3,the viscosity of the slurry reaches its peak,resulting in the highest friction coefficient.Additionally,when the PSD is 1:1:5 and 1:1:15,the friction coefficient is primarily governed by the plowing effect at the contact surface.When the PSD is 5:1:1 and 15:1:1,the friction coefficient is mainly controlled by the void ratio(VR)of debris.In the case of PSDs 1:5:1 and 1:15:1,the friction coefficient is jointly controlled by the adhesion effect of high-viscosity slurry and the plowing effect at the contact surface,and it gradually shifts towards being dominated by the VR as the amount of debris increases.Regardless of the SLRs and PSDs,the continuous deposition of debris and the injection of slurry incessantly exacerbate both the plowing and adhesion effects,creating a vicious cycle.This is the reason why the high-pressure water flushing method can not only fail to resolve the issue but also accelerate the occurrence of the surge in jacking force. 展开更多
关键词 Debris friction characteristic Friction test Jacking force surge Mudcake Rock pipe jacking
在线阅读 下载PDF
Enhanced Load-Settlement Curve Forecasts for Open-Ended Pipe Piles Incorporating Soil Plug Constraints Using Shallow and Deep Neural Networks
19
作者 Luttfi A.AL-HADDAD Mohammed Y.FATTAH +2 位作者 Wissam H.S.AL-SOUDANI Sinan A.AL-HADDAD Alaa Abdulhady JABER 《China Ocean Engineering》 2025年第3期562-572,共11页
This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Levera... This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Leveraging a dataset comprising open-ended pipe piles with varying geometrical and geotechnical properties, this research employs shallow neural network(SNN) and deep neural network(DNN) models to predict plugging conditions for both driven and pressed installation types. This paper underscores the importance of key parameters such as the settlement value,applied load, installation type, and soil configuration(loose, medium, and dense) in accurately predicting pile settlement. These findings offer valuable insights for optimizing pile design and construction in geotechnical engineering,addressing a longstanding challenge in the field. The study demonstrates the potential of the SNN and DNN models in precisely identifying plugging conditions before pile driving, with the SNN achieving R2 values ranging from0.444 to 0.711 and RMSPE values ranging from 24.621% to 48.663%, whereas the DNN exhibits superior performance, with R2 values ranging from 0.815 to 0.942 and RMSPE values ranging from 4.419% to 10.325%. These results have significant implications for enhancing construction practices and reducing uncertainties associated with pile foundation projects in addition to leveraging artificial intelligence tools to avoid long experimental procedures. 展开更多
关键词 pipe piles soil plug artificial neural network bearing capacity forecasts
在线阅读 下载PDF
Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling
20
作者 Hongkun Lu M.M.Noor K.Kadirgama 《Frontiers in Heat and Mass Transfer》 2025年第1期299-324,共26页
To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling... To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management. 展开更多
关键词 Battery thermal management system oscillating heat pipe liquid cooling hybrid BTMS graphene nanofluid
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部