In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the...Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.展开更多
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the brakin...Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.展开更多
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi...To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.展开更多
This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Fu...This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.展开更多
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue...In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
Introduction Blood flow provides a mechanical condition for blood cells and vessels,especially for endothelial cells.It is important to understand the mechanical characteristics of
Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precurs...Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target...To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigati...Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and...Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and estimate the optimal location of Static Synchronous Compensator(STATCOM) by reducing congestion for a deregulated power system.The proposed method is based on the use of Locational Marginal Price(LMP) difference technique and congestion cost.LMPs are obtained as a by-product of Optimal Power Flow(OPF),whereas Congestion Cost(CC) is a function of difference in LMP and power flows.The effiectiveness of this approach is demonstrated by reducing the CC and solution space which can identify the TLs more suitable for placement of STATCOM.Importantly,total real power loss,reactive power loss and total CC are the three main objective functions in this optimization process.The process is implemented by developing an IEEE-69 bus test system which verifies and validates the effectiveness of proposed optimization technique.Additionally,a comparative analysis is enumerated by implementing two optimization techniques:Flower Pollination Algorithm(FPA) and Particle Swarm Optimization(PSO).The comparative analysis is sufficient to demonstrate the superiority of FPA technique over PSO technique in estimating an optimal placement of a STATCOM.The results from the load-flow analysis illustrate the reduction in CC,total real and reactive power loss using FPA technique compared to PSO technique.Overall,satisfactory results are obtained without using complex calculations which verify the effectiveness of optimization techniques.展开更多
To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degrad...To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degradation of the fuel cell and the battery.Regarding the issues that power fluctuations damage the fuel cells'lifespan and high-current charging and discharging lead to battery capacity decay,the first layer of the strategy adopts locally weighted scatterplot smoothing(LOWESS)to smooth the output power of the fuel cells and prevent the battery from operating under high-current conditions.The second layer considers the uneven degree of degradation among the fuel cells and employs the dandelion optimizer(DO)algorithm to solve the objective function with an aging adaptive factor,optimizing the efficiency and lifespan.Meanwhile,the DO algorithm is enhanced by tent chaotic mapping and differential variation to improve the convergence speed and accuracy.Compared with the equivalent hydrogen consumption minimization strategy(ECMS)and the equal distribution strategy,the proposed strategy improves the average operating efficiency of the fuel cells,effectively reduces the degradation of the fuel cells and the capacity degradation of the battery,and maintains the performance consistency among the fuel cells.展开更多
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi...Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.展开更多
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT...The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.展开更多
Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-ba...Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-based model that uses Long-Short-Term Memory(LSTM)to optimize resource allocation under dynam-ically changing conditions.Designed to monitor the workload on individual IoT nodes,the model incorporates long-term data dependencies,enabling adaptive resource distribution in real time.The training process utilizes Min-Max normalization and grid search for hyperparameter tuning,ensuring high resource utilization and consistent performance.The simulation results demonstrate the effectiveness of the proposed method,outperforming the state-of-the-art approaches,including Dynamic and Efficient Enhanced Load-Balancing(DEELB),Optimized Scheduling and Collaborative Active Resource-management(OSCAR),Convolutional Neural Network with Monarch Butterfly Optimization(CNN-MBO),and Autonomic Workload Prediction and Resource Allocation for Fog(AWPR-FOG).For example,in scenarios with low system utilization,the model achieved a resource utilization efficiency of 95%while maintaining a latency of just 15 ms,significantly exceeding the performance of comparative methods.展开更多
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.
基金supported by the Science and Technology Project of Sichuan Electric Power Company“Power Supply Guarantee Strategy for Urban Distribution Networks Considering Coordination with Virtual Power Plant during Extreme Weather Event”(No.521920230003).
文摘Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.
基金Supported by Jiangsu Provincial Key R&D Program(Grant No.BE2019004)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.52025121)+1 种基金National Nature Science Foundation of China(Grant Nos.51805081,51975118,52002066)Jiangsu Provincial Achievement Transformation Project(Grant No.BA2018023).
文摘Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.
基金supported by the NationalNatural Science Foundation of China Under Grant 61961017Key R&D Plan Projects in Hubei Province 2022BAA060.
文摘To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.
基金Hong Kong Research Grants Council under the GRF(9043664).
文摘This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.
文摘In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
基金supported by grant from National Natural Science Foundation of China No10772127,30570450Program for New Century Excellent Talents in University NCET-06-0789Sichaun Youth Science and Technology Foundation 06ZQ026-009
文摘Introduction Blood flow provides a mechanical condition for blood cells and vessels,especially for endothelial cells.It is important to understand the mechanical characteristics of
基金supported by the National Natural Science Foundation of China(Nos.42005086,91844301,and 41805100)the National Key Research and Development Programof China(No.2022YFC3703500)+2 种基金China Postdoctoral Science Foundation(No.2023M733028)the Key Research and Development Program of Zhejiang Province(Nos.2021C03165 and 2022C03084)the Ecological and Environmental Scientific Research and Achievement Promotion Project of Zhejiang Province(No.2020HT0048).
文摘Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
基金Defense Industrial Technology Development Program (JCKY2020204B016)National Natural Science Foundation of China (92471206)。
文摘To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074213 and 11574108)the National Key R&D Program of China(Grant No.2022YFA1403103)+2 种基金the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Province(Grant No.ZR2023MA082)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Two-dimensional double-layer honeycomb(DLHC)materials are known for their diverse physical properties,but superconductivity has been a notably absent characteristic in this structure.We address this gap by investigating M_(2)N_(2)(M=Nb,Ta)with DLHC structure using first-principles calculations.Our results show that M_(2)N_(2)are stable and metallic,exhibiting superconducting behavior.Specifically,Nb_(2)N_(2)and Ta_(2)N_(2)display superconducting transition temperatures of 6.8 K and 8.8 K,respectively.Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes.Interestingly,two compounds also exhibit non-trivial band topology.Thus,M_(2)N_(2)are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
文摘Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and estimate the optimal location of Static Synchronous Compensator(STATCOM) by reducing congestion for a deregulated power system.The proposed method is based on the use of Locational Marginal Price(LMP) difference technique and congestion cost.LMPs are obtained as a by-product of Optimal Power Flow(OPF),whereas Congestion Cost(CC) is a function of difference in LMP and power flows.The effiectiveness of this approach is demonstrated by reducing the CC and solution space which can identify the TLs more suitable for placement of STATCOM.Importantly,total real power loss,reactive power loss and total CC are the three main objective functions in this optimization process.The process is implemented by developing an IEEE-69 bus test system which verifies and validates the effectiveness of proposed optimization technique.Additionally,a comparative analysis is enumerated by implementing two optimization techniques:Flower Pollination Algorithm(FPA) and Particle Swarm Optimization(PSO).The comparative analysis is sufficient to demonstrate the superiority of FPA technique over PSO technique in estimating an optimal placement of a STATCOM.The results from the load-flow analysis illustrate the reduction in CC,total real and reactive power loss using FPA technique compared to PSO technique.Overall,satisfactory results are obtained without using complex calculations which verify the effectiveness of optimization techniques.
基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX24_0161)the National Natural Science Foundation of China(Grant Nos.61374153 and 61403199).
文摘To optimize the operating efficiency and extend the lifespan of the multistack fuel cell hybrid system(MFCHS),this paper proposes a two-layer multiobjective optimal energy management strategy that considers the degradation of the fuel cell and the battery.Regarding the issues that power fluctuations damage the fuel cells'lifespan and high-current charging and discharging lead to battery capacity decay,the first layer of the strategy adopts locally weighted scatterplot smoothing(LOWESS)to smooth the output power of the fuel cells and prevent the battery from operating under high-current conditions.The second layer considers the uneven degree of degradation among the fuel cells and employs the dandelion optimizer(DO)algorithm to solve the objective function with an aging adaptive factor,optimizing the efficiency and lifespan.Meanwhile,the DO algorithm is enhanced by tent chaotic mapping and differential variation to improve the convergence speed and accuracy.Compared with the equivalent hydrogen consumption minimization strategy(ECMS)and the equal distribution strategy,the proposed strategy improves the average operating efficiency of the fuel cells,effectively reduces the degradation of the fuel cells and the capacity degradation of the battery,and maintains the performance consistency among the fuel cells.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41930971,42330111,and 42405061)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab).
文摘Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.
文摘The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.
基金funding of the Deanship of Graduate Studies and Scientific Research,Jazan University,Saudi Arabia,through Project Number:ISP-2024.
文摘Efficient resource management within Internet of Things(IoT)environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities.This study introduces a neural network-based model that uses Long-Short-Term Memory(LSTM)to optimize resource allocation under dynam-ically changing conditions.Designed to monitor the workload on individual IoT nodes,the model incorporates long-term data dependencies,enabling adaptive resource distribution in real time.The training process utilizes Min-Max normalization and grid search for hyperparameter tuning,ensuring high resource utilization and consistent performance.The simulation results demonstrate the effectiveness of the proposed method,outperforming the state-of-the-art approaches,including Dynamic and Efficient Enhanced Load-Balancing(DEELB),Optimized Scheduling and Collaborative Active Resource-management(OSCAR),Convolutional Neural Network with Monarch Butterfly Optimization(CNN-MBO),and Autonomic Workload Prediction and Resource Allocation for Fog(AWPR-FOG).For example,in scenarios with low system utilization,the model achieved a resource utilization efficiency of 95%while maintaining a latency of just 15 ms,significantly exceeding the performance of comparative methods.