期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm
1
作者 Chen Fan Xindong Wang +1 位作者 Gaochao Li Jian Long 《Chinese Journal of Chemical Engineering》 2025年第4期130-146,共17页
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help... Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking. 展开更多
关键词 HYDROCRACKING multi-objective optimization Improved SPEA2 Kinetic modeling
在线阅读 下载PDF
Multi-Objective Optimization of Marine Winch Based on Surrogate Model and MOGA
2
作者 Chunhuan Jin Linsen Zhu +1 位作者 Quanliang Liu Ji Lin 《Computer Modeling in Engineering & Sciences》 2025年第5期1689-1711,共23页
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate... This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization. 展开更多
关键词 Marine winch multi-objective optimization surrogate model
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
3
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
A multi-objective optimization approach for the virtual coupling train set driving strategy
4
作者 Junting Lin Maolin Li Xiaohui Qiu 《Railway Engineering Science》 2025年第2期169-191,共23页
This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the tem... This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm. 展开更多
关键词 High-speed trains Virtual coupling multi-objective optimization Deep reinforcement learning Knowledge transfer model predictive control
在线阅读 下载PDF
Multi-Objective Optimization for Hydrodynamic Performance of A Semi-Submersible FOWT Platform Based on Multi-Fidelity Surrogate Models and NSGA-Ⅱ Algorithms 被引量:1
5
作者 QIAO Dong-sheng MEI Hao-tian +3 位作者 QIN Jian-min TANG Guo-qiang LU Lin OU Jin-ping 《China Ocean Engineering》 CSCD 2024年第6期932-942,共11页
This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platfo... This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design. 展开更多
关键词 semi-submersible FOWT platforms Co-Kriging neural network algorithm multi-fidelity surrogate model NSGA-II multi-objective algorithm Pareto optimization
在线阅读 下载PDF
Prediction Model-based Multi-objective Optimization for Mix-ratio Design of Recycled Aggregate Concrete
6
作者 CHEN Tao WU Di YAO Xiaojun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1507-1517,共11页
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio... The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method. 展开更多
关键词 recycled coarse aggregate mix ratio multi-objective optimization prediction model compressive strength
原文传递
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
7
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
PolyDiffusion:AMulti-Objective Optimized Contour-to-Image Diffusion Framework
8
作者 Yuzhen Liu Jiasheng Yin +3 位作者 Yixuan Chen Jin Wang Xiaolan Zhou Xiaoliang Wang 《Computers, Materials & Continua》 2025年第11期3965-3980,共16页
Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controll... Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025). 展开更多
关键词 Diffusion models multi-object generation multi-objective optimization contour-to-image
在线阅读 下载PDF
Optimizing high-speed train tracking intervals with an improved multi-objective grey wolf
9
作者 Lin Yue Meng Wang +1 位作者 Peng Wang Jinchao Mu 《Railway Sciences》 2025年第3期322-336,共15页
Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation effi... Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process. 展开更多
关键词 Tracking running Train dynamics model multi-objective optimization MOGWO CR400AF electric multiple units
在线阅读 下载PDF
Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers 被引量:1
10
作者 LIU Sixing PEI Changbao +3 位作者 YE Xiaodong WANG Hao WU Fan TAO Shifei 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1388-1396,共9页
Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue... Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 multi-objective optimization(MOO) Kriging model microwave metamaterial absorber(MMA) surrogate models sampling strategy
在线阅读 下载PDF
A modified back analysis method for deep excavation with multi-objective optimization procedure
11
作者 Chenyang Zhao Le Chen +2 位作者 Pengpeng Ni Wenjun Xia Bin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1373-1387,共15页
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ... Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task. 展开更多
关键词 multi-objective optimization Back analysis Surrogate model multi-objective particle swarm optimization(MOPSO) Deep excavation
在线阅读 下载PDF
Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability
12
作者 Wenjun Zhou Mingzhi Yang +3 位作者 Qian Peng Yong Peng Kui Wang Qiang Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期735-755,共21页
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ... The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications. 展开更多
关键词 Aluminum connectors three-point bending simulation parametric design model multi-objective collaborative optimization
在线阅读 下载PDF
Multi-Objective Optimal Approach for Injection Molding Based on Surrogate Model and Particle Swarm Optimization Algorithm 被引量:5
13
作者 陈巍 周雄辉 +1 位作者 王会凤 王婉 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第1期88-93,共6页
An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision ... An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample. 展开更多
关键词 injection molding multi-objective optimization particle swarm optimization(PSO) surrogate model Kriging model
原文传递
The Information Modeling and Intelligent Optimization Method for Logistics Vehicle Routing and Scheduling with Multi-objective and Multi-constraint 被引量:2
14
作者 李蓓智 周亚勤 +1 位作者 兰世海 杨建国 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期455-459,466,共6页
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering... The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint. 展开更多
关键词 modern logistics vehicle scheduling routing optimization multi-objective multi-constraint biologic immunity information modeling
在线阅读 下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
15
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution... An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 multi-objective particle swarm optimization (MOPSO) hydrological model (HYMOD) multi-objective optimization
在线阅读 下载PDF
A New Definition and Calculation Model for Evolutionary Multi-Objective Optimization 被引量:1
16
作者 Zhou Ai-min, Kang Li-shan, Chen Yu-ping, Huang Yu-zhenState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期189-194,共6页
We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary mode... We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent. 展开更多
关键词 evolving equilibrium evolving solutions MINT model multi-objective optimization
在线阅读 下载PDF
Improved Genetic Optimization Algorithm with Subdomain Model for Multi-objective Optimal Design of SPMSM 被引量:8
17
作者 Jian Gao Litao Dai Wenjuan Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第1期160-165,共6页
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet... For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method. 展开更多
关键词 Improved Genetic Algorithm reduction of flux density spatial distortion sub-domain model multi-objective optimal design
在线阅读 下载PDF
Review of multi-objective optimization in long-term energy system models
18
作者 Wenxin Chen Hongtao Ren Wenji Zhou 《Global Energy Interconnection》 EI CSCD 2023年第5期645-660,共16页
Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focu... Modeling and optimizing long-term energy systems can provide solutions to various energy and environmental policies involving public-interest issues.The conventional optimization of long-term energy system models focuses on a single economic goal.However,the increasingly complex demands of energy systems necessitate the comprehensive consideration of multiple dimensional objectives,such as environmental,social,and energy security.Therefore,a multi-objective optimization of long-term energy system models has been developed.Herein,studies pertaining to the multi-objective optimization of long-term energy system models are summarized;the optimization objectives of long-term energy system models are classified into economic,environmental,social,and energy security aspects;and the multi-objective optimization methods are classified and explained based on the preferential expression of decision makers.Finally,the key development direction of the multi-objective optimization of energy system models is discussed. 展开更多
关键词 Long-term energy system models multi-objective optimization Energy security
在线阅读 下载PDF
Multi-Objective Optimization for Structure Crashworthiness Based on Kriging Surrogate Model and Simulated Annealing Algorithm
19
作者 SUN Xilong WANG Dengfeng +1 位作者 LI Ruheng ZHANG Bin 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第6期727-738,共12页
Multi-objective optimization of crashworthiness in automobile front-end structure was performed,and finite element model(FEM)was validated by experimental results to ensure that FEM can predict the response value with... Multi-objective optimization of crashworthiness in automobile front-end structure was performed,and finite element model(FEM)was validated by experimental results to ensure that FEM can predict the response value with sufficient accuracy.Seven design variables and four crashworthiness indicators were defined.Through orthogonal design method,18 FEMs were established,and the response values of crashworthiness indicators were extracted.By using the variable-response specimen matrix,Kriging surrogate model(KSM)was constructed to replace FEM to refect the function correlation between variables and responses.The accuracy of KSM was also validated.Finally,the simulated annealing optimization algorithm was implemented in KSM to seek optimal and reliable solutions.Based on the optimal results and comparison analysis,the 9096-th iteration point was the optimal solution.Although the intrusion of firewall and the mass of optimal structure increased slightly,the vehicle acceleration of the optimal solution decreased by 6.9%,which fectively reduced the risk of occupant injury. 展开更多
关键词 CRASHWORTHINESS multi-objective optimization Kriging surrogate model(KSM) simulated annealing algorithm
原文传递
Multi-objective reliability optimization design of high-speed heavy-duty gears based on APCK-SORA model
20
作者 Zhenliang YU Shuo WANG +1 位作者 Fengqin ZHAO Chenyuan LI 《Mechanical Engineering Science》 2022年第2期49-56,I0006,共9页
For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization... For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears. 展开更多
关键词 APCK-SORA model high-speed heavy-duty gears multi-objective reliability optimization design k-means clustering method
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部