期刊文献+
共找到3,578篇文章
< 1 2 179 >
每页显示 20 50 100
Engineering living root with mechanical stimulation derived from reciprocating compression in a double network hydrogel as elastic soil
1
作者 Qiye Wu Jinchun Xie +1 位作者 Junfu Li Yongjun Men 《Advanced Agrochem》 2025年第2期123-131,共9页
The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medi... The root system actively reacts to mechanical stimuli in its environment,transmitting mechanical signals to optimize the utilization of environmental resources.While the mechanical impedance created by the growth medium serves as the primary source of stimulation for the roots,extensive research has focused on the roots'response to static mechanical stimulation.However,the impact of dynamic mechanical stimulation on root phenotype remains underexplored.In this study,we utilized a low acyl gellan gum/polyacrylamide(GG/PAM)double network elastic hydrogel as the growth medium for rapeseed.We constructed a mechanical device to investigate the effects of reciprocating extrusion stimulation on the growth of the rapeseed root system.After three weeks of mechanical stimulation,the root system exhibited a significant increase in lateral roots.This branching enhanced the roots'anchoring and penetration into the hydrogel,thereby improving the root system's adaptability to its environment.Our findings offer valuable data and insights into the effects of reciprocating mechanical stimulation on root growth,providing a new way for engineering root phenotype. 展开更多
关键词 Mechanical stimulation Hydrogel medium double network hydrogel Root phenotype Rapeseed growth Elastic soil
在线阅读 下载PDF
Supramolecular polymer-based gel fracturing fluid with a double network applied in ultra-deep hydraulic fracturing 被引量:1
2
作者 Yong-Ping Huang Yong Hu +5 位作者 Chang-Long Liu Yi-Ning Wu Chen-Wei Zou Li-Yuan Zhang Ming-Wei Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1875-1888,共14页
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores... A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s. 展开更多
关键词 Ultra-deep reservoir Gel fracturing fluid double network Supramolecular polymer system Proppant suspension property
原文传递
Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection
3
作者 郑湾 LIU Lerong +5 位作者 Lü Hanlin WANG Yuhang LI Feihu ZHANG Yixuan 陈艳军 WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期487-496,共10页
We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh... We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection. 展开更多
关键词 visual detection ionic responsiveness fluorescent hydrogels double network hydrogels mechanical property
原文传递
Application of interpolated double network model for carbon nanotube composites in electrothermal shape memory behaviors
4
作者 Ting Fu Zhao Yan +2 位作者 Li Zhang Ran Tao Yiqi Mao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期133-153,共21页
Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design ... Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design scenarios and engineering application prospects.The thermoelectrically triggered shape memory process contains complex multi-physical mechanisms,especially when coupled with finite deformation rooted on micro-mechanisms.A multi-physical finite deformation model is necessary to get a deep understanding on the coupled electro-thermomechanical properties of electrothermal shape memory composites(ESMCs),beneficial to its design and wide application.Taking into consideration of micro-physical mechanisms of the MWCNTs interacting with double-chain networks,a finite deformation theoretical model is developed in this work based on two superimposed network chains of physically crosslinked network formed among MWCNTs and the chemically crosslinked network.An intact crosslinked chemical network is considered featuring with entropic-hyperelastic properties,superimposed with a physically crosslinked network where percolation theory is based on electric conductivity and electric-heating mechanisms.The model is calibrated by experiments and used for shape recoveries triggered by heating and electric fields.It captures the coupled electro-thermomechanical behavior of ESMCs and provides design guidelines for MWCNTs filled shape memory polymers. 展开更多
关键词 Shape memory polymer composite Viscoplastic constitutive relations Electro-thermomechanics double network model Multiple shape memory
原文传递
Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate)and sodium alginate with great toughness 被引量:6
5
作者 Jing Zhang Sunxiang Qian +3 位作者 Lingdong Chen Liqun Chen Liping Zhao Jie Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期235-244,共10页
Hydrogels with good antifouling and mechanical properties as well as biocompatibility have great application potential in the field of biomedicine.In this paper,a newly double network(DN)hydrogel was prepared based on... Hydrogels with good antifouling and mechanical properties as well as biocompatibility have great application potential in the field of biomedicine.In this paper,a newly double network(DN)hydrogel was prepared based on zwitterionic material sulfobetaine methacrylate(SBMA)and natural polysaccharide,sodium alginate(SA).The PSBMA network is covalently crosslinked while the SA network is ionically crosslinked by Ca^(2+).The hybrid crosslinked double network structure endows the DN hydrogel with excellent mechanical properties(E=0.19±0.01 MPa,σ=0.73±0.03 MPa),fast self-recovery ability as well as excellent fatigue resistance.Moreover,the results show that the PSBMA/SA-Ca^(2+)DN hydrogel is biocompatible and resists the absorption of non-specific proteins and adhesion of microorganisms,such as cells and algae,exhibiting outstanding antifouling properties.These unique characteristics of PSBMA/SA-Ca^(2+)DN hydrogel make it a promising candidate for biomedical application,such as artificial connective tissues,implantable devices,and underwater equipment. 展开更多
关键词 double network hydrogel ANTIFOULING Mechanical properties ZWITTERIONIC
原文传递
Tough Poly(L-DOPA)-containing Double Network Hydrogel Beads with High Capacity of Dye Adsorption 被引量:6
6
作者 Pei-Bin Zhang An-Qi Tang +3 位作者 Zhang-Hui Wang Jing-Yu Lu Bao-Ku Zhu Li-Ping Zhu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第11期1251-1261,共11页
Developing a low-cost and well-recyclable adsorbent with high adsorption capacity is greatly desirable in dye wastewater treatment. Here, we demonstrate a kind of novel tough and reusable hydrogel beads with quite hig... Developing a low-cost and well-recyclable adsorbent with high adsorption capacity is greatly desirable in dye wastewater treatment. Here, we demonstrate a kind of novel tough and reusable hydrogel beads with quite high capacity of dye adsorption via incorporating mussel-bioinspired poly(L-DOPA) (PDOPA) into alginate/poly(acrylamide) double network (DN) hydrogels. The synthesized PDOPA nanoaggregates were introduced into the DN hydrogels by simple one-pot mixing with the monomers prior to polymerization. The fabricated hydrogel beads exhibited high mechanical strength and good elastic recovery due to the interpenetrating Ca2+-alginate and poly(acrylamide) networks. It was shown that the beads exhibited relatively high dye adsorption capacity compared to other adsorbents reported in literature, and the introduction of PDOPA with an appropriate amount raised the adsorption capacity. It is believed that the addition of PDOPA and the matrix of double network architecture contributed synergistically to the high adsorption capacity of hydrogel beads. Moreover, the desorption of dyes could be easily realized via rinsing in acidic water and ethanol solution. The hydrogel beads remained the high adsorption capacity even after 5 times of adsorption and desorption cycles. This tough and stable hydrogel with high adsorption capacity may have potential in treatment of dye wastewater released by textile dyeing industry. 展开更多
关键词 Dye adsorption Hydrogel beads Poly(L-DOPA) double network High strength
原文传递
Hyperelastic model for polyacrylamide‑gelatin double network shape‑memory hydrogels 被引量:1
7
作者 Yifu Chen Haohui Zhang +2 位作者 Jiehao Chen Guozheng Kang Yuhang Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第5期748-756,I0001,共10页
A shape-memory double network hydrogel consists of two polymer networks:a chemically crosslinked primary network that is responsible for the permanent shape and a physically crosslinked secondary network that is used ... A shape-memory double network hydrogel consists of two polymer networks:a chemically crosslinked primary network that is responsible for the permanent shape and a physically crosslinked secondary network that is used to fix the temporary shapes.The formation/melting transition of the secondary network serves as an effective mechanism for the double network hydrogel’s shape-memory effect.When the crosslinks in the secondary network are dissociated by applying an external stimulus,only the primary network is left to support the load.When the secondary network is re-formed by removing the stimulus,both the primary and secondary networks support the load.In the past,models have been developed for the constitutive behaviors of double network hydrogels,but the model of shape-memory double network hydrogels is still lacking.This work aims to build a constitutive model for the polyacrylamide-gelatin double network shape-memory hydrogel developed in our previous work.The model is first calibrated by experimental data of the double network shape-memory hydrogel under uniaxial loading and then employed to predict the shape-fixing performance of the hydrogel.The model is also implemented into a three-dimension finite element code and utilized to simulate the shape-memory behavior of the double network hydrogel with inhomogeneous deformations related to applications. 展开更多
关键词 Shape-memory hydrogel double network Constitutive model Finite element simulation
原文传递
Preparation and evaluation of enzyme encapsulated hydrogels(single gels and double network gels) and enzyme immobilized magnetic beads
8
作者 闵俊哲 秋本真友子 +2 位作者 李翠苓 加藤大 豊岡利正 《Journal of Chinese Pharmaceutical Sciences》 CAS 2011年第3期226-234,共9页
In the present research,enzyme encapsulated hydrogels(single gels and double network gels)and enzyme immobilized magnetic beads,which allow high-throughput screening,were fabricated and evaluated in terms of the pre... In the present research,enzyme encapsulated hydrogels(single gels and double network gels)and enzyme immobilized magnetic beads,which allow high-throughput screening,were fabricated and evaluated in terms of the preservation,precision, and repeatability of enzyme activity.The fabricated gels and magnetic beads were analyzed in a 96-well microassay plate.Trypsin was successfully encapsulated in both types of gels and immobilized to the magnetic beads.However,pepsin,either encapsulated in the gels or immobilized to the magnetic beads,could not react with its substrates.The adaptability to various enzymes (e.g.,trypsin,β-glucuronidase,and CYP1A1)in the single gels and magnetic beads was superior to that in double network gels.However,the soak out of the enzymes was observed in the single gels.The double network gels could encapsulate trypsin,whereas the fabrication of the other enzymes(e.g.β-glucuronidase,CYP1A1,and pepsin)failed because of the inactivation of the enzymes by acryl amide and ammonium peroxodisulfate,which are the components of the gel formulation. The enzyme reaction in the magnetic beads exhibited the highest efficiency among the three fabrication methods.Furthermore, the stability of the enzymes immobilized to the magnetic beads was better than that fabricated by the other methods,and the activities of trypsin andβ-glucuronidase did not decline for up to one week.In addition,in the magnetic beads,the activities of trypsin andβ-glucuronidase can be well repeated.Hence,although the adaptability of the double network gels to various enzymes is currently limited,the efficiency of the enzyme encapsulation can be improved by optimizing the formulation of acryl amide gels. 展开更多
关键词 Immobilized enzyme Encapsulated enzyme Single gel double network gel Magnetic bead Trypsin β-Glucuronidase CYP1A1
原文传递
Unlocking the potentials of gel conformance for water shutoff in fractured reservoirs: Favorable attributes of the double network gel for enhancing oil recovery
9
作者 Qian-Hui Wu Ji-Jiang Ge +1 位作者 Lei Ding Gui-Cai Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1005-1017,共13页
The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the tradition... The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the traditional gels. The THSG gel demonstrates remarkable thermal stability, and no syneresis is observed after 12 months with high salinity brine (95,500 mg/L). Moreover, the SEM and XRD results indicate that the gel is intercalated into the lamellar structures of Na-MMT, where the gel can form a uniform and compact structure. In addition, the THSG gel has an excellent swelling behavior, even in the high salinity brine. In the slim tube experiments, the THSG gel exhibits high rupture pressure and improves blocking capacity after being ruptured. The core flooding results show that a layer of gel filter cake is formed on the face of the fracture, which may be promoted by a high matrix permeability, a small aperture fracture, and a high injection rate. After the gel treatment, the fracture can be completely blocked by the THSG gel. It is found that a high incremental oil recovery (65.3%) can be achieved when the fracture was completely blocked, compared to 40.2% if the gel is ruptured. Although the swelling of ruptured gel can improve oil recovery, part of the injected brine may be channeled through the gel-filled fractures, resulting in a decrease in the sweep efficiency. Therefore, the improved blocking ability by gel swelling (e.g., in fresh water) may be less efficient to contribute to an enhancement of oil recovery. It is also found that the pressure gradient and residual resistance factor to water (Frrw) are higher if the matrix is less permeable, indicating that the fractured reservoir with lower matrix permeability may require a higher gel strength for treatment. The findings of this study may provide novel insights on designing robust double network gels for water shutoff in fractured reservoirs. 展开更多
关键词 double network structure Gel swelling Rupture pressure Fractured core Oil recovery factor
原文传递
A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties 被引量:4
10
作者 Lei Zhu Chun-ming Xiong +3 位作者 Xiao-fen Tang Li-jun Wang Kang Peng Hai-yang Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期350-358,368,共10页
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t... Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly. 展开更多
关键词 double netWORK HYDROGEL WEAK POLYELECTROLYTE High mechanical strength Shape MEMORY properties
在线阅读 下载PDF
Exploration of structural,magnetic,and magnetocaloric characteristics of double perovskites HoRCoMnO_(6)(R=Ho,Gd,Eu or Nd)
11
作者 O.El Oujihi L.H.Omari +2 位作者 A.Hajji A.Tizliouine E.Dhahri 《Journal of Rare Earths》 2025年第4期743-751,I0004,共10页
A conventional solid-state process was used to synthesize the double perovskite materials HoRCoMnO_(6)(R=Ho,Gd,Eu,Nd).The structural properties of the compounds were investigated using X-ray powder diffraction(XRD).Th... A conventional solid-state process was used to synthesize the double perovskite materials HoRCoMnO_(6)(R=Ho,Gd,Eu,Nd).The structural properties of the compounds were investigated using X-ray powder diffraction(XRD).The results revealed that Ho_(2)CoMnO_(6) crystallizes in a monoclinic structure with the P2_(1)/n space group.In contrast,the other compounds HoRCoMnO_(6)(R=Gd,Eu,or Nd) exhibit an orthorhombic structure with the Pnma space group.As a result,the average crystallite size also changes as a function of rare-earth element doping.This investigation reveals that the magnetic properties of the compounds studied are significantly dependent on the doping elements.The Curie temperature T_C,for example,increases from 80 to 118℃ with the ionic radii of rare earths increasing.Furthermore,the study of the magnetocaloric effect(MCE) shows that the maximum of the entropy variation(-ΔS_(M)^(max)) increases from 4.97 to 6.06 J/(kg·K) under a magnetic field of 5 T with substitution by rare-earth ions.To examine the efficiency of MCE materials,the relative cooling power(RCP) was evaluated and is found to increase with increment of rare-earth radius till 406.69 J/kg for Nd.The mean entropy variation with tempe rature(TEC) was also studied.Due to their significant magnetocaloric performance,HoRCoMnO_(6)(noted as HRCMO) compounds(with R=Ho,Gd,Eu or Nd) could be good candidates for low-temperature magnetic cooling applications. 展开更多
关键词 double perovskite Structural propriety Magnetic characteristics Rare earth compounds Magneto-caloric effect
原文传递
Double Conductive Panel System Cooling Solutions:L-Shaped Channel and Vented Cavity under Ternary Nanofluid Enhanced Non-Uniform Magnetic Field
12
作者 Fatih Selimefendigil Kaouther Ghachem +2 位作者 Hind Albalawi Badr M.AlShammari Lioua Kolsi 《Computer Modeling in Engineering & Sciences》 2025年第7期899-925,共27页
Cooling system design applicable to more than one photovoltaic(PV)unit may be challenging due to the arrangement and geometry of the modules.Different cooling techniques are provided in this study to regulate the temp... Cooling system design applicable to more than one photovoltaic(PV)unit may be challenging due to the arrangement and geometry of the modules.Different cooling techniques are provided in this study to regulate the temperature of conductive panels that are arranged perpendicular to each other.The model uses two vented cavity systems and one L-shaped channel with ternary nanofluid enhanced non-uniform magnetic field.Their cooling performances and comparative results between different systems are provided.The finite element method is used to conduct a numerical analysis for a range of values of the following:the strength of themagnetic field(Hartmann number(Ha)between 0 and 50),the inclination of the magnetic field(γbetween 0 and 90),and the loading of nanoparticles in the base fluid(ϕbetween 0 and 0.03),taking into account both uniformand non-uniformmagnetic fields.For the L-shaped channel and vented cavities,vortex size is controlled by imposing magnetic field and adjusting its strength.Whether uniform or non-uniform magnetic field is applied affects the cooling performances for different cooling configurations.Temperature drops of the horizontal panel with different magnetic field strengths by using channel cooling,vented cavity-1 and vented cavity-2 systems for uniformmagnetic are 11℃,21.5℃,and 3℃when the reference case of Ha=0 is considered for the same cooling systems.However,they become 9.5℃,13.5℃,and 12.5℃when nonuniform magnetic field is used.In the presence of uniform magnetic field effects and changing its magnitude,the use of cooling channel in vented cavity-1 and vented cavity-2 systems results in temperature drops of 4℃,10.8℃,and 3.8℃for vertical panels.On the other hand,when non-uniform magnetic field effects are present,they become 0.5℃,2.1℃,and 9℃.For L-channel cooling,the average Nu for the horizontal panel is more affected byγ,andNu rises asγrises.With increasing nanoparticle loading of ternary nanofluid,the average panel surface temperature shows a linear drop.For the horizontal panel,the temperature declines for nanofluid at the highest loading are 4℃,10℃,and 12℃as compared to using only base fluid.The values of 5℃,7℃,and 11℃are obtained for the vertical panel.Different cooling systems’performance is estimated using artificial neural networks.The method captures the combined impact of applying non-uniformmagnetic field and nanofluid together on the cooling performancewhile accounting for varied cooling strategies for both panels. 展开更多
关键词 double panel ternary nanofluid PV cooling non-uniform magnetic field artificial neural network
在线阅读 下载PDF
Double-Target Collaborative Spectrum Sharing for 6G Hybrid Satellite-Terrestrial Networks with User-Centric Channel Pools
13
作者 Wang Yanmin Feng Wei +1 位作者 Xiao Ming Wang Chengxiang 《China Communications》 2025年第10期25-33,共9页
Satellite and terrestrial cellular networks can be integrated together to achieve extended broad-band coverage for,e.g.,maritime communication sce-narios,in the upcoming sixth-generation(6G)era.To counter spectrum sca... Satellite and terrestrial cellular networks can be integrated together to achieve extended broad-band coverage for,e.g.,maritime communication sce-narios,in the upcoming sixth-generation(6G)era.To counter spectrum scarcity,collaborative spectrum sharing is considered for hybrid satellite-terrestrial networks(HSTNs)in this paper.With only slowly-varying large-scale channel state information(CSI),joint power and channel allocation is implemented for terrestrial mobile terminals(MTs)which share the same frequency band with the satellite MTs oppor-tunistically.Specially,strict quality service assurance is adopted for terrestrial MTs under the constraint of leakage interference to satellite MTs.With the tar-get of maximizing both the number of served terres-trial MTs and the average sum transmission rate,a double-target spectrum sharing problem is formulated.To solve the complicated mixed integer programming(MIP)problem efficiently,user-centric channel pools are introduced.Simulations demonstrate that the proposed spectrum sharing scheme could achieve a significant performance gain for the HSTN. 展开更多
关键词 double target hybrid satellite-terrestrial network large-scale channel state information service quality spectrum sharing
在线阅读 下载PDF
Enhancing d-p orbital hybridization through oxygen vacancies boosting capacity and kinetics of layered double hydroxides for durable aqueous magnesium-ion batteries
14
作者 Weizhi Kou Zhitang Fang +9 位作者 Yangyang Sui Yubo Yang Cong Liu Chenyu Yang Congyan Jiang Gang Yang Luming Peng Xuefeng Guo Weiping Ding Wenhua Hou 《Journal of Energy Chemistry》 2025年第8期558-569,共12页
Layered double hydroxides(LDHs)are potential cathode materials for aqueous magnesium-ion batteries(AMIBs).However,the low capacity and sluggish kinetics significantly limit their electrochemical performance in AMIBs.H... Layered double hydroxides(LDHs)are potential cathode materials for aqueous magnesium-ion batteries(AMIBs).However,the low capacity and sluggish kinetics significantly limit their electrochemical performance in AMIBs.Herein,we find that oxygen vacancies can significantly boost the capacity,electrochemical kinetics,and structure stability of LDHs.The corresponding structure-performance relationship and energy storage mechanism are elaborated through exhaustive in/ex-situ experimental characterizations and density functional theory(DFT)calculations.Specially,in-situ Raman and DFT calculations reveal that oxygen vacancies elevate orbital energy of O 2p and electron density of O atoms,thereby enhancing the orbital hybridization of O 2p with Ni/Co 3d.This facilitates electron transfer between O and adjacent Ni/Co atoms and improves the covalency of Ni–O and Co–O bonds,which activates Ni/Co atoms to release more capacity and stabilizes the Ov-NiCo-LDH structure.Moreover,the distribution of relaxation times(DRT)and molecular dynamics(MD)simulations disclose that the enhanced d-p orbital hybridization optimizes the electronic structure of Ov-NiCo-LDH,which distinctly reduces the diffusion energy barriers of Mg^(2+)and improves the charge transfer kinetics of Ov-NiCo-LDH.Consequently,the assembled Ov-NiCo-LDH//active carbon(AC)and Ov-NiCo-LDH//perylenediimide(PTCDI)AMIBs can both deliver high specific discharge capacity(182.7 and 59.4 mAh g^(−1)at 0.5 A g^(−1),respectively)and long-term cycling stability(85.4%and 89.0%of capacity retentions after 2500 and 2400 cycles at 1.0 A g^(−1),respectively).In addition,the practical prospects for Ov-NiCo-LDH-based AMIBs have been demonstrated in different application scenarios.This work not only provides an effective strategy for obtaining high-performance cathodes of AMIBs,but also fundamentally elucidates the inherent mechanisms. 展开更多
关键词 Layered double hydroxide Aqueous magnesium-ion battery Oxygen vacancy d-p orbital hybridization Electrochemical kinetics
在线阅读 下载PDF
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
15
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep Q-network graph neural network
在线阅读 下载PDF
Gain adaptive tuning method for fiber Raman amplifier based on two-stage neural networks and double weights updates
16
作者 MU Kuanlin WU Yue 《Optoelectronics Letters》 2025年第5期284-289,共6页
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph... We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy. 展开更多
关键词 gain adaptive tuning connection weights error predicted target gains training connection weights unified nn gain adaptive tuning method double weights updates fiber raman amplifier fra
原文传递
Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode 被引量:1
17
作者 Mengyu Shi Junlong Zhang +7 位作者 Guochuan Tang Ben Wang Sen Wang Xiaoxian Ren Guojie Li Weihua Chen Chuntai Liu Changyu Shen 《Nano Research》 SCIE EI CSCD 2024年第6期5278-5287,共10页
Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrol... Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking(hyaluronic acid)and chemical crosslinking(synthetic zwitterionic monomer copolymerized with acrylamide)is introduced to overcome these obstacles.On the one hand,highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H_(2)O-poor interface to avoid side reactions.On the other hand,the charged groups(sulfonic and imidazolyl)in chemical crosslinking structure build anion/cation transport channels to boost ions’kinetics migration and regulate the typical solvent structure[Zn(H_(2)O)_(6)]^(2+)to R-SO_(3)^(−)[Zn(H_(2)O)_(4)]^(2+),with uniform electric field distribution and significant resistance to dendrites and parasitic reactions.Based on the above functions,the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm^(−2),and Zn||MnO_(2)full cell has a reversible specific capacity of 150 mAh·g^(−1)after 1000 cycles at 2 C with this hydrogel electrolyte.Furthermore,the pouch cell delivers impressive flexibility and cyclability for energy-storage applications. 展开更多
关键词 Zn anode DENDRITES parasitic reactions polyzwitterion double network hydrogel electrolyte
原文传递
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
18
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
在线阅读 下载PDF
Improved Double Deep Q Network Algorithm Based on Average Q-Value Estimation and Reward Redistribution for Robot Path Planning
19
作者 Yameng Yin Lieping Zhang +3 位作者 Xiaoxu Shi Yilin Wang Jiansheng Peng Jianchu Zou 《Computers, Materials & Continua》 SCIE EI 2024年第11期2769-2790,共22页
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning... By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation. 展开更多
关键词 double Deep Q network path planning average Q-value estimation reward redistribution mechanism reward-prioritized experience selection method
在线阅读 下载PDF
Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis
20
作者 Yu Li Mingxiao Li +2 位作者 Dongyang Ou Junjie Guo Fangyuan Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期893-909,共17页
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ... With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models. 展开更多
关键词 Historical behavior analysis spatial crowdsourcing deep double dueling Q-networks
在线阅读 下载PDF
上一页 1 2 179 下一页 到第
使用帮助 返回顶部