Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivat...Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivation.Here we show a DPC adsorbed layered double hydroxide(DPC-LDH)architecture with enhanced controlled release property and soil distribution.By drip irrigation on cotton,it makes total dosage of DPC reduced from 270 to 90 g/ha,while the frequency decreased from 5 to 2 times.The unique supramolecular interaction is confirmed as the basis of controlled release behavior.Moreover,except for the physical resistance to the sedimentation brought by the lamellar LDH,the enhanced electrostatic interaction makes DPC-LDH the dominant distribution in soil.It improves the efficiency of DPC molecules absorbed by cotton plants and greatly saves the inputs in labor and chemicals.This method is expected to achieve the yield increase and agricultural sustainability by energy saving and emission reduction.展开更多
Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent year...Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.展开更多
In our previous study, complete single DNA strands which were obtained from nuclei, chloroplasts and plant mitochondria obeyed Chargaff’s second parity rule, although those which were obtained from animal mitochondri...In our previous study, complete single DNA strands which were obtained from nuclei, chloroplasts and plant mitochondria obeyed Chargaff’s second parity rule, although those which were obtained from animal mitochondria deviated from the rule. On the other hand, plant mitochondria obeyed another different rule after their classification. Complete single DNA strand sequences obtained from chloroplasts, plant mitochondria, and animal mitochondria, were divided into the coding and non-coding regions. The non-coding region, which was the complementary coding region on the reverse strand, was incorporated as a coding region in the forward strand. When the nucleotide contents of the coding region or non-coding regions were plotted against the composition of the four nucleotides in the complete single DNA strand, it was determined that chloroplast and plant mitochondrial DNA obeyed Chargaff’s second parity rule in both the coding and non-coding regions. However, animal mitochondrial DNA deviated from this rule. In chloroplast and plant mitochondrial DNA, which obey Chargaff’s second parity rule, the lines of regression for G (purine) and C (pyrimidine) intersected with regression lines for A (purine) and T (pyrimidines), respectively, at around 0.250 in all cases. On the other hand, in animal mitochondrial DNA, which deviates from Chargaff’s second parity rule, only regression lines due to the content of homonucleotides or their analogs in the coding or non-coding region against those in the complete single DNA strand intersected at around 0.250 at the horizontal axis. Conversely, the intersection of the two lines of regression (G and A or C and T) against the contents of heteronucleotides or their analogs shifted from 0.25 in both coding and non-coding regions. Nucleotide alternations in chloroplasts and plant mitochondria are strictly regulated, not only by the proportion of homonucleotides and their analogs, but also by the heteronucleotides and their analogs. They are strictly regulated in animal mitochondria only by the content of homonucleotides and their analogs.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
A digital electro-hydraulic 4-port differential pressure control valve with a novel principle and structure is presented. The valve is designed by applying the regulating pressure technique of a capillary damping tube...A digital electro-hydraulic 4-port differential pressure control valve with a novel principle and structure is presented. The valve is designed by applying the regulating pressure technique of a capillary damping tube and also making full use of double freedom of the spool motion. Thevalve can implement digitizing interface easily. The theoretical analysis and experimental resultsshow that the valve is not only very simple in structure and convenient in use, but also has manygood properties, such as fast response, no-null-shift, etc.展开更多
High efficiency Double-Fed Induction Generator applies new power electronic technology, and utilizes vector control to fix the magnetic direction of the stator to the vertical axis. Adjusting the input current of roto...High efficiency Double-Fed Induction Generator applies new power electronic technology, and utilizes vector control to fix the magnetic direction of the stator to the vertical axis. Adjusting the input current of rotor via an inverter can separately control the cross axis and vertical axis current of real power and reactive power of a generator. Traditionally, rotating speed affects frequency and the output is unstable. This study concentrates on high efficiency Double-Fed Induction Generators and Traditional Generators from mathematic model to derive and control the characteristics simulation and comparison than get an output of high efficiency Double-Fed Industrial Generators. This study utilizes the simulation software MATLAB/Simulink to simulate the response characteristics of vector control of a Double-Fed Industrial Generator. The operating and control functions are better than those of a traditional generator.展开更多
With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles e...With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.展开更多
基金supported by the National Key R&D Program of China(2021YFA0716704)the Young Scientists Fund of the National Natural Science Foundation of China(No.22208372).
文摘Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivation.Here we show a DPC adsorbed layered double hydroxide(DPC-LDH)architecture with enhanced controlled release property and soil distribution.By drip irrigation on cotton,it makes total dosage of DPC reduced from 270 to 90 g/ha,while the frequency decreased from 5 to 2 times.The unique supramolecular interaction is confirmed as the basis of controlled release behavior.Moreover,except for the physical resistance to the sedimentation brought by the lamellar LDH,the enhanced electrostatic interaction makes DPC-LDH the dominant distribution in soil.It improves the efficiency of DPC molecules absorbed by cotton plants and greatly saves the inputs in labor and chemicals.This method is expected to achieve the yield increase and agricultural sustainability by energy saving and emission reduction.
文摘Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.
文摘In our previous study, complete single DNA strands which were obtained from nuclei, chloroplasts and plant mitochondria obeyed Chargaff’s second parity rule, although those which were obtained from animal mitochondria deviated from the rule. On the other hand, plant mitochondria obeyed another different rule after their classification. Complete single DNA strand sequences obtained from chloroplasts, plant mitochondria, and animal mitochondria, were divided into the coding and non-coding regions. The non-coding region, which was the complementary coding region on the reverse strand, was incorporated as a coding region in the forward strand. When the nucleotide contents of the coding region or non-coding regions were plotted against the composition of the four nucleotides in the complete single DNA strand, it was determined that chloroplast and plant mitochondrial DNA obeyed Chargaff’s second parity rule in both the coding and non-coding regions. However, animal mitochondrial DNA deviated from this rule. In chloroplast and plant mitochondrial DNA, which obey Chargaff’s second parity rule, the lines of regression for G (purine) and C (pyrimidine) intersected with regression lines for A (purine) and T (pyrimidines), respectively, at around 0.250 in all cases. On the other hand, in animal mitochondrial DNA, which deviates from Chargaff’s second parity rule, only regression lines due to the content of homonucleotides or their analogs in the coding or non-coding region against those in the complete single DNA strand intersected at around 0.250 at the horizontal axis. Conversely, the intersection of the two lines of regression (G and A or C and T) against the contents of heteronucleotides or their analogs shifted from 0.25 in both coding and non-coding regions. Nucleotide alternations in chloroplasts and plant mitochondria are strictly regulated, not only by the proportion of homonucleotides and their analogs, but also by the heteronucleotides and their analogs. They are strictly regulated in animal mitochondria only by the content of homonucleotides and their analogs.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘A digital electro-hydraulic 4-port differential pressure control valve with a novel principle and structure is presented. The valve is designed by applying the regulating pressure technique of a capillary damping tube and also making full use of double freedom of the spool motion. Thevalve can implement digitizing interface easily. The theoretical analysis and experimental resultsshow that the valve is not only very simple in structure and convenient in use, but also has manygood properties, such as fast response, no-null-shift, etc.
文摘High efficiency Double-Fed Induction Generator applies new power electronic technology, and utilizes vector control to fix the magnetic direction of the stator to the vertical axis. Adjusting the input current of rotor via an inverter can separately control the cross axis and vertical axis current of real power and reactive power of a generator. Traditionally, rotating speed affects frequency and the output is unstable. This study concentrates on high efficiency Double-Fed Induction Generators and Traditional Generators from mathematic model to derive and control the characteristics simulation and comparison than get an output of high efficiency Double-Fed Industrial Generators. This study utilizes the simulation software MATLAB/Simulink to simulate the response characteristics of vector control of a Double-Fed Industrial Generator. The operating and control functions are better than those of a traditional generator.
基金Supported by National Natural Science Foundation of China(Grant No.51507096)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014JL035)
文摘With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.