Most synchrotron light storage rings are equipped with a higher harmonic cavity(HHC)and are currently predominantly used to increase beam life.With the enhancement of the beam current intensity,it is necessary to cons...Most synchrotron light storage rings are equipped with a higher harmonic cavity(HHC)and are currently predominantly used to increase beam life.With the enhancement of the beam current intensity,it is necessary to consider instability problems that may be caused by heavy beam loading effects.In this study,we incorporated a HHC into the small-signal Pedersen mathematical model and used system signal analysis to investigate the mode-zero Robinson instability driven by the passive superconducting harmonic cavity and active superconducting harmonic cavity fundamental modes.To further study and alleviate this instability,we introduced direct radio-frequency feedback,an automatic voltage control loop,and a phase-lock loop into the model,discussed the impact of the feedback loop parameter settings on the stability margin,and provided suggestions for parameter settings.展开更多
A new doubled haploid (DH) rice population was established from a cross between WBPH-resistant japonica Chunjiang 06 (CJ-06) and susceptible indica TN1. Sucking inhibitory and ovicidal resistance of the DH rice lines ...A new doubled haploid (DH) rice population was established from a cross between WBPH-resistant japonica Chunjiang 06 (CJ-06) and susceptible indica TN1. Sucking inhibitory and ovicidal resistance of the DH rice lines were evaluated on the basis of non-preference response of WBPH immigrants and honeydew excretion by WBPH females, and appearance of watery lesions in the necrotic discoloration of leaf sheaths ovipositied by WBPH,respectively. Both the major gene resistance to WBPH, sucking inhibitory and ovicidal resistance, showed 1 (resistant): 1 (susceptible) segregation ratio in the DH population. Relative density of WBPH populations and damage scores in the DH population indicated combined functions of both the major resistance genes as well as QTLs affecting the host plant response to WBPH infestations. Thus, the newly developed CJ-06/TN1 DH population could be a useful material to analyze major genes and QTLs for WBPH resistance in japonica rice.展开更多
Whitebacked planthopper (WBPH) -resistance in a japonica / indica doubled haploid (DH) rice population established from a cross between WBPH-resistant japonica Chun]iang 06 and susceptible indica TN1, was comparativel...Whitebacked planthopper (WBPH) -resistance in a japonica / indica doubled haploid (DH) rice population established from a cross between WBPH-resistant japonica Chun]iang 06 and susceptible indica TN1, was comparatively evaluated through a field experiment based on the WBPH immigrant density and standardized seedbox screening test (SSST). All the susceptible DH lines in the field experiment behaved accordingly in SSST. However, 35 of resistant 66 lines (53%) in the field, were categorized to susceptible groups in SSST. Likewise, there were no significant differences in WBPH immigrant densities among 70 DH lines that were highly resistant to susceptible in SSST. The results revealed that SSST could not evaluate properly WBPH resistance in the DH lines. Four QTLs for WBPH-resistance phenotyped by the immigrant density were detected on chromosomes 2, 3, 4, and 11. Of them, the QTL on chromosome 4 was the most effective (LOD 21.8, variance 78%). Five QTLs associated with seedling mortality were mapped on chromosomes 2, 3, 4, 5 and 6. In addition to the QTL (LOD 10.5, variance 68%) on chromosome 4, there was another major QTL (LOD 12.7, variance 71%) located on chromosome 5, which was SSST-specific but might be irrespective of the WBPH resistance traits.展开更多
The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the t...The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.展开更多
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi...This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.展开更多
With the continuous development of China's social economy,it has correspondingly promoted the development of the railway engineering experimental career,and has made tremendous progress in the cultivation of railw...With the continuous development of China's social economy,it has correspondingly promoted the development of the railway engineering experimental career,and has made tremendous progress in the cultivation of railway engineering experimental talents.At the same time,there are still many problems in the development of rail transit in the construction of"double first-class".Only by solving the existing problems can we further promote the smooth development of the training of railway engineering experimental talents.Therefore,the article mainly analyzes the problems and countermeasures of railway engineering experimental training,combined with the status and role of laboratories in the training of talents under the background of"double first-class",according to the society's demand for first-class engineering talents,we reformed and explored laboratory resource integration and optimization.展开更多
Training talents for the society is the responsibility of colleges and universities.The society needs applied and innovative art design majors.In order to cultivate talents needed by society and keep up with the devel...Training talents for the society is the responsibility of colleges and universities.The society needs applied and innovative art design majors.In order to cultivate talents needed by society and keep up with the development plan of the Ministry of Education,higher vocational colleges need to reform.This paper adopts the method of theoretical analysis to elaborate from the four aspects of focusing equally on science and education,promote learning by competition;integrating industry and education,nurturing talents together;keeping the mission in mind while serving students;and finding the right positioning,giving full play to the advantages.展开更多
This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for di...This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for different external cavity length. Two modulations of the internal cavity length are performed. One is only for the internal cavity length being modulated and the other is for both the internal and the external cavity length being modulated. The undulation frequency of the total light is found to be determined by the ratio of external cavity length to internal cavity length in both modulations. When the external cavity length is integral times of the internal cavity length, the fringe frequency of the total light could be seven or even more times of that in conventional optical feedback. A simple theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.展开更多
The double Rayleigh backscatter (DRB) effect in long distance CATV systems using fiber Raman amplifiers (FRAs) is investigated theoretically in the paper. As a comparison, performance of a system with erbium doped...The double Rayleigh backscatter (DRB) effect in long distance CATV systems using fiber Raman amplifiers (FRAs) is investigated theoretically in the paper. As a comparison, performance of a system with erbium doped fiber amplifier (EDFA) is also evaluated. According to the simulation results, it is found that, in case of FRA, the increase of carrier-to-noise ratio (CNR) due to the DRB effect will not impair the performance more than that using EDFA.展开更多
Field performance of whitebacked planthopper (WBPH)-resistance of four phenotypes was evaluated in Chunjiang 06 (C J-06) / TN1 DH rice lines, which were expressed by different combinations of sucking inhibitory an...Field performance of whitebacked planthopper (WBPH)-resistance of four phenotypes was evaluated in Chunjiang 06 (C J-06) / TN1 DH rice lines, which were expressed by different combinations of sucking inhibitory and ovicidal traits inherited independently from C J-06. WBPH established the highest populations in susceptible DH lines that had neither sucking inhibitorynor ovicidal resistance. Both immigration and subsequent population levels were kept below the damage-causing density in the sucking inhibitory DH lines even under a WBPH outbreak. WBPH could not build up populations in the DH lines having both the sucking inhibitory and ovicidal resistance. Although WBPH immigrated preferentially to non-sucking inhibitory DH lines with ovicidal resistance, subsequent population buildup was significantly suppressed. It was concluded that the differential performance to WBPH-resistance in CJ-06 / TN1 DH lines was primarily due to the sucking inhibitory trait, and complementarity to the ovicidal trait.展开更多
An endpoint backward method is proposed to calculate the time-optimal control law of double integrator system. First, the time intervals between the switch points and the endpoints are calculated. Then, the positions ...An endpoint backward method is proposed to calculate the time-optimal control law of double integrator system. First, the time intervals between the switch points and the endpoints are calculated. Then, the positions of switch points are decided according to the motion equation, and the switch line is formed. Theoretical analysis shows that this method can be used to solve the double integrator system with functional constraint target set and deal with the second order oscillation system.展开更多
To build the top class of higher education by focusing on the goal of the“Double First-Class”,it needs to analyze the defect and deficiency and identify the demand for the training of the talent under the background...To build the top class of higher education by focusing on the goal of the“Double First-Class”,it needs to analyze the defect and deficiency and identify the demand for the training of the talent under the background of“Double First-Class”.Considering of those issues,it is suggested that building the curriculum system scientifically and rationally in following aspects:deepening the training objectives,professionalizing the structure and contents of the curriculum system,optimizing the content,enhancing the construction of practical education system and internationalizing the curriculum system.Also,with those aspects,a reference is provided for the cultivation of talents with innovative consciousness and ability to solve complex engineering problems under the background of the“Double First-Class”construction.展开更多
Throughout the world's first-class universities, the university culture is the soul of the universities' survival and development, and the cultural competitiveness has become an important symbol of the core competit...Throughout the world's first-class universities, the university culture is the soul of the universities' survival and development, and the cultural competitiveness has become an important symbol of the core competitiveness of the universities. The first-class university culture is very important to the construction of the "double first-class". Therefore, our country should bring the university cultural construction into the big pattern of the "double first-class" construction, guide the construction of the university cultures with the socialist core values, strengthen the cultural confidence, inherit the Chinese excellent traditional cultures, pay attention to the rational exchange of the multicultural cultures, highlight the Chinese characteristics of the first-class university cultures, and realize the dream of the Chinese nation of a power of the higher education.展开更多
Lanthanide ions(Ln^(3+))doping provides a potential strategy to control over the luminescent properties of lead-free halide double perovskite nanocrystals(DP NCs).However,due to the low energy transfer efficiency betw...Lanthanide ions(Ln^(3+))doping provides a potential strategy to control over the luminescent properties of lead-free halide double perovskite nanocrystals(DP NCs).However,due to the low energy transfer efficiency between self-trapped exciton(STE)and Ln^(3+)ions,the characteristic emissions of Ln^(3+)ions are not prominent.Furthermore,the energy transfer mechanism between STE and Ln^(3+)ions is also elusive and requires in-depth study.We chose trace Bi^(3+)-doped Cs_(2)Ag_(0.6)Na_(0.4)InCl_(6-x)Br_(x) as a representative DP matrix to demonstrate that by tuning the bromide concentration,the Ln^(3+)emission can be greatly enhanced.Such enhanced STE and Ln^(3+)ions energy transfer originates from the high covalency of Ln-Br bond,which contributes to improve ment of the characteristic emission of Ln^(3+)ions.Furthermo re,optical spectroscopy reveals that the energy transfer mechanism from DP to Eu^(3+)ions is different from all the other doped Ln^(3+)ions.The energy transfer from DP to Eu^(3+)ions is mostly through Eu-Br charge transfer while the other Ln^(3+)ions are excited by energy transfer from STE.The distinct energy transfer mechanism has resulted from the energy separation between the excited energy level of Ln^(3+)ions and the bottom of conduction band of DP.With increasing the energy separation,the energy transfer from STE to Ln^(3+)ions is less efficient because of the generation of a larger number of phonons and finally becomes impossible for Eu^(3+)ions.Our results provide new insight into tuning the energy transfer of Ln^(3+)-doped DP NCs.展开更多
In order to cultivate more excellent talents in art and design majors following the requirements of the"13th Five-Year Plan"national education development,this paper analyzes in-depth on the current status o...In order to cultivate more excellent talents in art and design majors following the requirements of the"13th Five-Year Plan"national education development,this paper analyzes in-depth on the current status of higher vocational education in art design profession under the background of the"Double High"plan and the challenges faced,and proposes the building of school-enterprise"Double Subject"education system and the establishment of a"diversified"evaluation system.Deepening the integration of industry and education,schools and enterprises jointly explore modern apprenticeship talent training models for innovative art and design majors,and provide a strong guarantee for the implementation of the"Double High"plan modern apprenticeship talent training model.展开更多
To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃...To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.展开更多
Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic pr...Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic properties has not yet been investigated. Herein, we synthesized two new Ruddlesden–Popper LFHDPs, namely(C_(5)H_(12)N)_(4)AgBiI_(8)(CAB-1) and(C_(6)H_(14)N)_(4)Ag Bi I8(CAB-2) using cyclopentylamine and cyclohexylamine as monoamine ligands. Indeed, these two Ag(Ⅰ)-Bi(Ⅲ) LFHDPs form smooth and uniform films ranging in thickness from 250 nm to 1 μm, with preferred orientations. Notably, the studies on the optical properties showed that the direct band gap value decreased from 2.17 e V to 1.91 e V for CAB-1 and from 2.05 e V to 1.86 e V for CAB-2 with increasing thickness. Accordingly, photo-current response using a xenon lamp revealed a significant difference of over 1000 n A between light and dark conditions for1 μm-thickness films, suggesting potential for light harvesting. Other than that, thicker films of CAB-1and CAB-2 exhibit high stability for 90 days in a relatively humid environment(RH of 55%), paving the way for promising optoelectronic applications.展开更多
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur...Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.展开更多
Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIG...Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.展开更多
文摘Most synchrotron light storage rings are equipped with a higher harmonic cavity(HHC)and are currently predominantly used to increase beam life.With the enhancement of the beam current intensity,it is necessary to consider instability problems that may be caused by heavy beam loading effects.In this study,we incorporated a HHC into the small-signal Pedersen mathematical model and used system signal analysis to investigate the mode-zero Robinson instability driven by the passive superconducting harmonic cavity and active superconducting harmonic cavity fundamental modes.To further study and alleviate this instability,we introduced direct radio-frequency feedback,an automatic voltage control loop,and a phase-lock loop into the model,discussed the impact of the feedback loop parameter settings on the stability margin,and provided suggestions for parameter settings.
文摘A new doubled haploid (DH) rice population was established from a cross between WBPH-resistant japonica Chunjiang 06 (CJ-06) and susceptible indica TN1. Sucking inhibitory and ovicidal resistance of the DH rice lines were evaluated on the basis of non-preference response of WBPH immigrants and honeydew excretion by WBPH females, and appearance of watery lesions in the necrotic discoloration of leaf sheaths ovipositied by WBPH,respectively. Both the major gene resistance to WBPH, sucking inhibitory and ovicidal resistance, showed 1 (resistant): 1 (susceptible) segregation ratio in the DH population. Relative density of WBPH populations and damage scores in the DH population indicated combined functions of both the major resistance genes as well as QTLs affecting the host plant response to WBPH infestations. Thus, the newly developed CJ-06/TN1 DH population could be a useful material to analyze major genes and QTLs for WBPH resistance in japonica rice.
文摘Whitebacked planthopper (WBPH) -resistance in a japonica / indica doubled haploid (DH) rice population established from a cross between WBPH-resistant japonica Chun]iang 06 and susceptible indica TN1, was comparatively evaluated through a field experiment based on the WBPH immigrant density and standardized seedbox screening test (SSST). All the susceptible DH lines in the field experiment behaved accordingly in SSST. However, 35 of resistant 66 lines (53%) in the field, were categorized to susceptible groups in SSST. Likewise, there were no significant differences in WBPH immigrant densities among 70 DH lines that were highly resistant to susceptible in SSST. The results revealed that SSST could not evaluate properly WBPH resistance in the DH lines. Four QTLs for WBPH-resistance phenotyped by the immigrant density were detected on chromosomes 2, 3, 4, and 11. Of them, the QTL on chromosome 4 was the most effective (LOD 21.8, variance 78%). Five QTLs associated with seedling mortality were mapped on chromosomes 2, 3, 4, 5 and 6. In addition to the QTL (LOD 10.5, variance 68%) on chromosome 4, there was another major QTL (LOD 12.7, variance 71%) located on chromosome 5, which was SSST-specific but might be irrespective of the WBPH resistance traits.
文摘The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.
基金Project(KF2029)supported by the State Key Laboratory of Automotive Safety and Energy(Tsinghua University),ChinaProject(102253)supported partially by the Innovate UK。
文摘This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.
基金The research is financially supported by the Education and Teaching Reform Project of Central South University(Project No.:2019jy097)。
文摘With the continuous development of China's social economy,it has correspondingly promoted the development of the railway engineering experimental career,and has made tremendous progress in the cultivation of railway engineering experimental talents.At the same time,there are still many problems in the development of rail transit in the construction of"double first-class".Only by solving the existing problems can we further promote the smooth development of the training of railway engineering experimental talents.Therefore,the article mainly analyzes the problems and countermeasures of railway engineering experimental training,combined with the status and role of laboratories in the training of talents under the background of"double first-class",according to the society's demand for first-class engineering talents,we reformed and explored laboratory resource integration and optimization.
文摘Training talents for the society is the responsibility of colleges and universities.The society needs applied and innovative art design majors.In order to cultivate talents needed by society and keep up with the development plan of the Ministry of Education,higher vocational colleges need to reform.This paper adopts the method of theoretical analysis to elaborate from the four aspects of focusing equally on science and education,promote learning by competition;integrating industry and education,nurturing talents together;keeping the mission in mind while serving students;and finding the right positioning,giving full play to the advantages.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60438010).
文摘This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for different external cavity length. Two modulations of the internal cavity length are performed. One is only for the internal cavity length being modulated and the other is for both the internal and the external cavity length being modulated. The undulation frequency of the total light is found to be determined by the ratio of external cavity length to internal cavity length in both modulations. When the external cavity length is integral times of the internal cavity length, the fringe frequency of the total light could be seven or even more times of that in conventional optical feedback. A simple theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No.61077018)the Shanghai Leading Academic Discipline Project (Grant Nos.S30108, SKLFSO200901)
文摘The double Rayleigh backscatter (DRB) effect in long distance CATV systems using fiber Raman amplifiers (FRAs) is investigated theoretically in the paper. As a comparison, performance of a system with erbium doped fiber amplifier (EDFA) is also evaluated. According to the simulation results, it is found that, in case of FRA, the increase of carrier-to-noise ratio (CNR) due to the DRB effect will not impair the performance more than that using EDFA.
基金JIRCAS International Collaborative Project Fund(B33102-331)Grant Project of Zhejiang Province for International Collaboration(2002AA217111)supported this work
文摘Field performance of whitebacked planthopper (WBPH)-resistance of four phenotypes was evaluated in Chunjiang 06 (C J-06) / TN1 DH rice lines, which were expressed by different combinations of sucking inhibitory and ovicidal traits inherited independently from C J-06. WBPH established the highest populations in susceptible DH lines that had neither sucking inhibitorynor ovicidal resistance. Both immigration and subsequent population levels were kept below the damage-causing density in the sucking inhibitory DH lines even under a WBPH outbreak. WBPH could not build up populations in the DH lines having both the sucking inhibitory and ovicidal resistance. Although WBPH immigrated preferentially to non-sucking inhibitory DH lines with ovicidal resistance, subsequent population buildup was significantly suppressed. It was concluded that the differential performance to WBPH-resistance in CJ-06 / TN1 DH lines was primarily due to the sucking inhibitory trait, and complementarity to the ovicidal trait.
文摘An endpoint backward method is proposed to calculate the time-optimal control law of double integrator system. First, the time intervals between the switch points and the endpoints are calculated. Then, the positions of switch points are decided according to the motion equation, and the switch line is formed. Theoretical analysis shows that this method can be used to solve the double integrator system with functional constraint target set and deal with the second order oscillation system.
文摘To build the top class of higher education by focusing on the goal of the“Double First-Class”,it needs to analyze the defect and deficiency and identify the demand for the training of the talent under the background of“Double First-Class”.Considering of those issues,it is suggested that building the curriculum system scientifically and rationally in following aspects:deepening the training objectives,professionalizing the structure and contents of the curriculum system,optimizing the content,enhancing the construction of practical education system and internationalizing the curriculum system.Also,with those aspects,a reference is provided for the cultivation of talents with innovative consciousness and ability to solve complex engineering problems under the background of the“Double First-Class”construction.
文摘Throughout the world's first-class universities, the university culture is the soul of the universities' survival and development, and the cultural competitiveness has become an important symbol of the core competitiveness of the universities. The first-class university culture is very important to the construction of the "double first-class". Therefore, our country should bring the university cultural construction into the big pattern of the "double first-class" construction, guide the construction of the university cultures with the socialist core values, strengthen the cultural confidence, inherit the Chinese excellent traditional cultures, pay attention to the rational exchange of the multicultural cultures, highlight the Chinese characteristics of the first-class university cultures, and realize the dream of the Chinese nation of a power of the higher education.
基金Project supported by the Research Project of Mindu Innovation Laboratory(2021ZZ114)Natural Science Foundation of Xiamen(3502Z20227255)+1 种基金Major Research Project of Xiamen(3502Z20191015)the Science and Technology Major Project of Fujian Province(2021HZ021013)。
文摘Lanthanide ions(Ln^(3+))doping provides a potential strategy to control over the luminescent properties of lead-free halide double perovskite nanocrystals(DP NCs).However,due to the low energy transfer efficiency between self-trapped exciton(STE)and Ln^(3+)ions,the characteristic emissions of Ln^(3+)ions are not prominent.Furthermore,the energy transfer mechanism between STE and Ln^(3+)ions is also elusive and requires in-depth study.We chose trace Bi^(3+)-doped Cs_(2)Ag_(0.6)Na_(0.4)InCl_(6-x)Br_(x) as a representative DP matrix to demonstrate that by tuning the bromide concentration,the Ln^(3+)emission can be greatly enhanced.Such enhanced STE and Ln^(3+)ions energy transfer originates from the high covalency of Ln-Br bond,which contributes to improve ment of the characteristic emission of Ln^(3+)ions.Furthermo re,optical spectroscopy reveals that the energy transfer mechanism from DP to Eu^(3+)ions is different from all the other doped Ln^(3+)ions.The energy transfer from DP to Eu^(3+)ions is mostly through Eu-Br charge transfer while the other Ln^(3+)ions are excited by energy transfer from STE.The distinct energy transfer mechanism has resulted from the energy separation between the excited energy level of Ln^(3+)ions and the bottom of conduction band of DP.With increasing the energy separation,the energy transfer from STE to Ln^(3+)ions is less efficient because of the generation of a larger number of phonons and finally becomes impossible for Eu^(3+)ions.Our results provide new insight into tuning the energy transfer of Ln^(3+)-doped DP NCs.
文摘In order to cultivate more excellent talents in art and design majors following the requirements of the"13th Five-Year Plan"national education development,this paper analyzes in-depth on the current status of higher vocational education in art design profession under the background of the"Double High"plan and the challenges faced,and proposes the building of school-enterprise"Double Subject"education system and the establishment of a"diversified"evaluation system.Deepening the integration of industry and education,schools and enterprises jointly explore modern apprenticeship talent training models for innovative art and design majors,and provide a strong guarantee for the implementation of the"Double High"plan modern apprenticeship talent training model.
基金The National Natural Science Foundation of China(No.52338011).
文摘To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.
基金supported by the National Natural Science Foundation of China (Nos. 22375157 and W2433042)the Key Scientific and Technological Innovation Team of Shaanxi Province(No. 2020TD-001)+1 种基金the Fundamental Research Funds for Central Universities, State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE23409)the Instrument Analysis Center of Xi’an Jiaotong University for assistance。
文摘Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic properties has not yet been investigated. Herein, we synthesized two new Ruddlesden–Popper LFHDPs, namely(C_(5)H_(12)N)_(4)AgBiI_(8)(CAB-1) and(C_(6)H_(14)N)_(4)Ag Bi I8(CAB-2) using cyclopentylamine and cyclohexylamine as monoamine ligands. Indeed, these two Ag(Ⅰ)-Bi(Ⅲ) LFHDPs form smooth and uniform films ranging in thickness from 250 nm to 1 μm, with preferred orientations. Notably, the studies on the optical properties showed that the direct band gap value decreased from 2.17 e V to 1.91 e V for CAB-1 and from 2.05 e V to 1.86 e V for CAB-2 with increasing thickness. Accordingly, photo-current response using a xenon lamp revealed a significant difference of over 1000 n A between light and dark conditions for1 μm-thickness films, suggesting potential for light harvesting. Other than that, thicker films of CAB-1and CAB-2 exhibit high stability for 90 days in a relatively humid environment(RH of 55%), paving the way for promising optoelectronic applications.
基金funded by the National Science Centre,Poland,on the basis of the decision number UMO-2020/37/B/ST8/02097supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 9880).
文摘Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.
基金supported by the Science and Technology Innovation Development Program(No.70304901).
文摘Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.