The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon ...The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.展开更多
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based o...In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based on facile hydrothermal method.Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+utilizing b-CDs and r-CDs.The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm.Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal,whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg^(2+)and r-CDs,serving as the reference signal in the sensing system.Under optimal circumstances,this probe exhibited an excellent linearity between the fluorescence response values of F450/F650 and Hg^(2+)concentrations over range of 0.01-10μmol/L,and the limit of detectionwas down to 5.3 nmol/L.Furthermore,this probe was successfully employed for sensing Hg^(2+)in practical environmental water samples with satisfied recoveries of 98.5%-105.0%.The constructed ratiometric fluorescent probe provided a rapid,environmental-friendly,reliable,and efficient platform for measuring trace Hg^(2+)in environmental field.展开更多
Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food...Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.展开更多
The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS...The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.展开更多
Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectr...Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
Aqueous zinc ion batteries have received widespread attention.However,the growth of zinc dendrites and hydrogen evolution reaction generation seriously hinder the practical application of zinc ion bat-teries.Herein,it...Aqueous zinc ion batteries have received widespread attention.However,the growth of zinc dendrites and hydrogen evolution reaction generation seriously hinder the practical application of zinc ion bat-teries.Herein,it is reported that a multifunctional dendrites-free low-temperature PVA-based gel elec-trolyte by introducing negatively charged polymer carbon quantum dots(QDs)and the organic antifreeze dimethyl sulfoxide(DMSO)into it.The QDs carrying a large number of functional groups on the surface can effectively adsorb Zn^(2+),eliminating the“tip effect”,and inducing the uniform deposition of Zn^(2+)and the formation of a dendrites-free structure.Meanwhile,the solvation structure of adsorbed Zn^(2+)can be controlled by charged groups to reduce the generation of side reactions,thus obtaining high-performance zinc ion batteries.The Zn/polyaniline(PANi)full battery can be stably cycled more than 1000 times at-20℃,and the design of this gel electrolyte can provide good feasibility for safe,stable,and flexible energy storage devices.展开更多
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin...To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.展开更多
The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and...The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.展开更多
Carbon dots(CDs)are fluorescent carbon-based nanomaterials with sizes smal-ler than 10 nm,that are renowned for their exceptional properties,including superior anti-photobleaching,excellent biocompatibility,and minima...Carbon dots(CDs)are fluorescent carbon-based nanomaterials with sizes smal-ler than 10 nm,that are renowned for their exceptional properties,including superior anti-photobleaching,excellent biocompatibility,and minimal toxicity,which have received sig-nificant interest.Near-infrared(NIR)light has emerged as an ideal light source in the biolo-gical field due to its advantages of minimal scattering and absorption,long wavelength emission,increased tissue penetration,and reduced interference from biological back-grounds.CDs with efficient absorption and/or emission characteristics in the NIR spectrum have shown remarkable promise in the biomedical uses.This study provides a comprehens-ive overview of the preparation methods and wavelength modulation strategies for near-in-frared CDs and reviews research progress in their use in the areas of biosensing,bioimaging,and therapy.It also discusses current challenges and clinical prospects,aimed at deepening our understanding of the subject and promoting further advances in this field.展开更多
In this work,iron-doped carbon dots(Fe-CDs)with strong peroxidase-mimicking activity were synthesized for tumor-specific therapy.Their intrinsic red fluorescence enabled high-contrast cellular imaging,revealing prefer...In this work,iron-doped carbon dots(Fe-CDs)with strong peroxidase-mimicking activity were synthesized for tumor-specific therapy.Their intrinsic red fluorescence enabled high-contrast cellular imaging,revealing preferen⁃tial mitochondrial accumulation.In the acidic and hydrogen peroxide(H_(2)O_(2))-rich tumor microenvironment,Fe-CDs catalyzed hydroxyl radical(·OH)generation,inducing oxidative stress and lipid peroxidation,ultimately triggering ferroptosis.In vitro and in vivo studies demonstrated potent tumor inhibition.Furthermore,Fe-CDs exhibited excel⁃lent biocompatibility with no significant systemic toxicity.By integrating fluorescence imaging and catalytic therapy,this study presents a promising nanoplatform for tumor treatment and ferroptosis research.展开更多
Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby s...Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby subsequently initiating the natural immune response and augmenting antitumor therapy.However,the current lack of accurate methods for Mn^(2+)determination in cells significantly limits their mechanism investigation;hence,it is urgent to establish novel tools to detect Mn^(2+)in cells.In this study,the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing L-aspartic acid and p-phenylenediamine as raw materials.In the presence of Mn^(2+),the emission peak centered at 350 nm exhibited significant enhancement,whereas another peak at 610 nm remained stable.Consequently,a ratiometric sensor for Mn^(2+)determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference.Under the optimal condition,a good linear relationship was achieved between the F350/F610 value and Mn^(2+)concentration ranging from 0.9 to 15μmol/L,with a calculated LOD of 61 nmol/L.Benefiting from the special Mn^(2+)-induced ratiometric approach,this method demonstrates outstanding sensitivity,selectivity,and stability,rendering it applicable for Mn^(2+)determination in complex biological samples,as well as Mn^(2+)imaging in MKN-45 and LO2 cells.展开更多
Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This re...Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.展开更多
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to...Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.展开更多
Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for...Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.展开更多
We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.C...We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1).展开更多
Nitrogen-phosphorus co-doped carbon dots(N,P-CDs)were synthesized via a one-step hydrothermal method using p-phenylene diisocyanate,ethylenediamine,and concentrated phosphoric acid as raw materials.The morphology,stru...Nitrogen-phosphorus co-doped carbon dots(N,P-CDs)were synthesized via a one-step hydrothermal method using p-phenylene diisocyanate,ethylenediamine,and concentrated phosphoric acid as raw materials.The morphology,structure,and optical properties of the N,P-CDs were characterized in detail.The N,P-CDs exhibit excellent water solubility,with optimal excitation and emission wavelengths of 392 nm and 520 nm,respectively.A novel fluorescence method for detection of curcumin was developed,demonstrating a linear range of 3.50-242.24μmol/L and a detection limit of 0.086μmol/L.When applied to the detection of curcumin in real water samples and chili powder seasoning,the method achieved recovery between 94.48%and 105.82%,and with the relative standard deviations(RSDs)ranging from 0.17%to 0.62%.These results highlight that the constructed fluorescence analysis method based on the N,P-CDs has the potential for the accurate and reliable detection of curcumin in real-world samples.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.12494604,12393834,12393831,62274014,6223501662335015)the National Key R&D Program of China (Grant No.2024YFA1208900)。
文摘The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金supported by the National Natural Science Foundation of China (Nos.22106039,21976211,and 42007204)the Science Foundation of Henan Normal University (No.2021PL23)+1 种基金the Excellent Science and Technology Innovation Team of Henan Normal University (No.2021TD06)the Program for Innovative Research Team in Science and Technology in the University of Henan Province (No.20IRTSTHN011).
文摘In present work,blue carbon dots(b-CDs)were derived from ammonium citrate and guanidine hydrochloride,and red carbon dots(r-CDs)were stemmed from malonate,ethylenediamine and meso-tetra(4-carboxyphenyl)porphin based on facile hydrothermal method.Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+utilizing b-CDs and r-CDs.The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm.Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal,whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg^(2+)and r-CDs,serving as the reference signal in the sensing system.Under optimal circumstances,this probe exhibited an excellent linearity between the fluorescence response values of F450/F650 and Hg^(2+)concentrations over range of 0.01-10μmol/L,and the limit of detectionwas down to 5.3 nmol/L.Furthermore,this probe was successfully employed for sensing Hg^(2+)in practical environmental water samples with satisfied recoveries of 98.5%-105.0%.The constructed ratiometric fluorescent probe provided a rapid,environmental-friendly,reliable,and efficient platform for measuring trace Hg^(2+)in environmental field.
基金supported by the Natural Science Foundation of Hebei Province(No.E2022208046)National Science Foundation of China(No.52004080)+2 种基金Key project of National Natural Science Foundation of China(No.U20A20130)Key research and development project of Hebei Province(No.22373704D)2023 Central Government Guide Local Science and Technology Development Fund Project(No.236Z1812 G)。
文摘Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.
文摘The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.62374142 and 22005255)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
基金supported by the National Natural Science Foundation of China Project(No.52163001)the Guizhou Minzu University Research Platform Grant(No.GZMUGCZX[2021]01)+2 种基金the Guizhou Provincial Science and Technology Program Project Grant(Qiankehe Platform Talents-CXTD[2021]005,Qiankehe Platform Talents-GCC[2022]010-1,Qiankehe Fuqi[2023]001)the Central Guided Local Science and Technology Development Funds Project(Qiankehe Zhong Yindi[2023]035)the Doctor Startup Fund of Guizhou Minzu University(Grant No.GZMUZK[2024]QD77).
文摘Aqueous zinc ion batteries have received widespread attention.However,the growth of zinc dendrites and hydrogen evolution reaction generation seriously hinder the practical application of zinc ion bat-teries.Herein,it is reported that a multifunctional dendrites-free low-temperature PVA-based gel elec-trolyte by introducing negatively charged polymer carbon quantum dots(QDs)and the organic antifreeze dimethyl sulfoxide(DMSO)into it.The QDs carrying a large number of functional groups on the surface can effectively adsorb Zn^(2+),eliminating the“tip effect”,and inducing the uniform deposition of Zn^(2+)and the formation of a dendrites-free structure.Meanwhile,the solvation structure of adsorbed Zn^(2+)can be controlled by charged groups to reduce the generation of side reactions,thus obtaining high-performance zinc ion batteries.The Zn/polyaniline(PANi)full battery can be stably cycled more than 1000 times at-20℃,and the design of this gel electrolyte can provide good feasibility for safe,stable,and flexible energy storage devices.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.22035001 and No.52233005.
文摘To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.
基金supported by the National Natural Science Foundation of China(62374142,12175189 and 11904302)External Cooperation Program of Fujian(2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(3502Z20191015).
文摘The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.
基金financial support by Talent Introduction Research Initiation Fund of Shanxi Bethune Hospital(2022RC04)Basic Research Program Youth Science Research Project of Shanxi province(202203021212096)+1 种基金Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases(CXZX-202302)Research Project Plan of Shanxi Provincial Administration of Traditional Chinese Medicine(2023ZYYB2021)。
文摘Carbon dots(CDs)are fluorescent carbon-based nanomaterials with sizes smal-ler than 10 nm,that are renowned for their exceptional properties,including superior anti-photobleaching,excellent biocompatibility,and minimal toxicity,which have received sig-nificant interest.Near-infrared(NIR)light has emerged as an ideal light source in the biolo-gical field due to its advantages of minimal scattering and absorption,long wavelength emission,increased tissue penetration,and reduced interference from biological back-grounds.CDs with efficient absorption and/or emission characteristics in the NIR spectrum have shown remarkable promise in the biomedical uses.This study provides a comprehens-ive overview of the preparation methods and wavelength modulation strategies for near-in-frared CDs and reviews research progress in their use in the areas of biosensing,bioimaging,and therapy.It also discusses current challenges and clinical prospects,aimed at deepening our understanding of the subject and promoting further advances in this field.
文摘In this work,iron-doped carbon dots(Fe-CDs)with strong peroxidase-mimicking activity were synthesized for tumor-specific therapy.Their intrinsic red fluorescence enabled high-contrast cellular imaging,revealing preferen⁃tial mitochondrial accumulation.In the acidic and hydrogen peroxide(H_(2)O_(2))-rich tumor microenvironment,Fe-CDs catalyzed hydroxyl radical(·OH)generation,inducing oxidative stress and lipid peroxidation,ultimately triggering ferroptosis.In vitro and in vivo studies demonstrated potent tumor inhibition.Furthermore,Fe-CDs exhibited excel⁃lent biocompatibility with no significant systemic toxicity.By integrating fluorescence imaging and catalytic therapy,this study presents a promising nanoplatform for tumor treatment and ferroptosis research.
基金Supported by National Natural Science Foundation of China(22264023)Natural Science Foundation of Shaanxi Province(2024JC-YBQN-0150)+2 种基金Yan'an Science and Technology Bureau Project(2023-SFGG-057)Scientific Research Projects of Education Department of Shaanxi Province(22JK0614)PhD Start Fund of Yan'an University(YDBK2022-15)。
文摘Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby subsequently initiating the natural immune response and augmenting antitumor therapy.However,the current lack of accurate methods for Mn^(2+)determination in cells significantly limits their mechanism investigation;hence,it is urgent to establish novel tools to detect Mn^(2+)in cells.In this study,the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing L-aspartic acid and p-phenylenediamine as raw materials.In the presence of Mn^(2+),the emission peak centered at 350 nm exhibited significant enhancement,whereas another peak at 610 nm remained stable.Consequently,a ratiometric sensor for Mn^(2+)determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference.Under the optimal condition,a good linear relationship was achieved between the F350/F610 value and Mn^(2+)concentration ranging from 0.9 to 15μmol/L,with a calculated LOD of 61 nmol/L.Benefiting from the special Mn^(2+)-induced ratiometric approach,this method demonstrates outstanding sensitivity,selectivity,and stability,rendering it applicable for Mn^(2+)determination in complex biological samples,as well as Mn^(2+)imaging in MKN-45 and LO2 cells.
文摘Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.
文摘Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.
基金The Tertiary Education Scientific Research Project of the Guangzhou Municipal Education Bureau(2024312227)Innovative and Entrepreneurial Projects of Guangzhou University Students(202411078014)+2 种基金Guangzhou University Open Sharing Fund for Instruments and Equipment(2025)National Major Scientific Research Instrument Development Project(22227804)Sub-subject of the National Key Research Project(2023YFB3210100)。
文摘Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.
基金supported by the National Natural Science Foundation of China (Grant No.22063010)the Natural Science Foundation of Shaanxi Province (Grant No.2022QFY07-05)Yan'an Science and Technology Plan Project (Grants No.2022SLJBZ-002, 2023-CYL-193)。
文摘We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1).
基金National Natural Science Foundation of China(No.22274090)The Basic Research Project of Shanxi Province(No.202203021221026)+1 种基金Shanxi Province Patent Conversion Project(No.202306012)Shanxi Provincial Key Laboratory of Classical Prescription Strengthening Yang(No.202104010910011)。
文摘Nitrogen-phosphorus co-doped carbon dots(N,P-CDs)were synthesized via a one-step hydrothermal method using p-phenylene diisocyanate,ethylenediamine,and concentrated phosphoric acid as raw materials.The morphology,structure,and optical properties of the N,P-CDs were characterized in detail.The N,P-CDs exhibit excellent water solubility,with optimal excitation and emission wavelengths of 392 nm and 520 nm,respectively.A novel fluorescence method for detection of curcumin was developed,demonstrating a linear range of 3.50-242.24μmol/L and a detection limit of 0.086μmol/L.When applied to the detection of curcumin in real water samples and chili powder seasoning,the method achieved recovery between 94.48%and 105.82%,and with the relative standard deviations(RSDs)ranging from 0.17%to 0.62%.These results highlight that the constructed fluorescence analysis method based on the N,P-CDs has the potential for the accurate and reliable detection of curcumin in real-world samples.