BACKGROUND Illness anxiety disorder(IAD)is a common,distressing,and debilitating condition with the key feature being a persistent conviction of the possibility of having one or more serious or progressive physical di...BACKGROUND Illness anxiety disorder(IAD)is a common,distressing,and debilitating condition with the key feature being a persistent conviction of the possibility of having one or more serious or progressive physical disorders.Because eye movements are guided by visual-spatial attention,eye-tracking technology is a comparatively direct,continuous measure of attention direction and speed when stimuli are oriented.Researchers have tried to identify selective visual attention biases by tracking eye movements within dot-probe paradigms because dot-probe paradigm can distinguish these attentional biases more clearly.AIM To examine the association between IAD and biased processing of illness-related information.METHODS A case-control study design was used to record eye movements of individuals with IAD and healthy controls while participants viewed a set of pictures from four categories(illness-related,socially threatening,positive,and neutral images).Biases in initial orienting were assessed from the location of the initial shift in gaze,and biases in the maintenance of attention were assessed from the duration of gaze that was initially fixated on the picture per image category.RESULTS The eye movement of the participants in the IAD group was characterized by an avoidance bias in initial orienting to illness-related pictures.There was no evidence of individuals with IAD spending significantly more time viewing illness-related images compared with other images.Patients with IAD had an attention bias at the early stage and overall attentional avoidance.In addition,this study found that patients with significant anxiety symptoms showed attention bias in the late stages of attention processing.CONCLUSION Illness-related information processing biases appear to be a robust feature of IAD and may have an important role in explaining the etiology and maintenance of the disorder.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)du...Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms.展开更多
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will ...Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability.In this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task completion.However,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource wastage.Additionally,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities problem.This paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH scenarios.Additionally,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH scenarios.The performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed approach.The simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.展开更多
Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior.It often happens that humans and animals make decisions and prepare actions under uncertain situation...Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior.It often happens that humans and animals make decisions and prepare actions under uncertain situations.Uncertainty would significantly affect the state of animals’minds,but may not be reflected in behavior.How to“read animals’mind state”under different situations is a challenge.Here,we report that neuronal activity in the medial prefrontal cortex(mPFC)of rats can reflect the environmental uncertainty when the task situation changes from certain to uncertain.Rats were trained to perform behavioral tasks under certain and uncertain situations.Under certain situations,rats were required to simply repeat two nose-poking actions that each triggered short auditory tone feedback(single-task situation).Whereas under the uncertain situation,the feedback could randomly be either the previous tone or a short musical rhythm.No additional action was required upon the music feedback,and the same secondary nose-poking action was required upon the tone feedback(dual-task situation);therefore,the coming task was uncertain before action initiation.We recorded single-unit activity from the mPFC when the rats were performing the tasks.We found that in the dual task,when uncertainty was introduced,many mPFC neurons were actively engaged in dealing with the uncertainty before the task initiation,suggesting that the rats could be aware of the task situation change and encode the information in the mPFC before the action of task initiation.展开更多
Low Earth Orbit(LEO)satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources.Existing studies integrate...Low Earth Orbit(LEO)satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources.Existing studies integrate edge computing with LEO satellite networks to optimize task offloading;however,they often overlook the impact of frequent topology changes,unstable transmission links,and intermittent satellite visibility,leading to task execution failures and increased latency.To address these issues,this paper proposes a dynamic integrated spaceground computing framework that optimizes task offloading under LEO satellite mobility constraints.We design an adaptive task migration strategy through inter-satellite links when target satellites become inaccessible.To enhance data transmission reliability,we introduce a communication stability constraint based on transmission bit error rate(BER).Additionally,we develop a genetic algorithm(GA)-based task scheduling method that dynamically allocates computing resources while minimizing latency and energy consumption.Our approach jointly considers satellite computing capacity,link stability,and task execution reliability to achieve efficient task offloading.Experimental results demonstrate that the proposed method significantly improves task execution success rates,reduces system overhead,and enhances overall computational efficiency in LEO satellite networks.展开更多
With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)of...With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method.展开更多
Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surve...Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surveys from 337 employees across diverse organizations.The results indicate that vicarious abusive supervision significantly undermines both self-efficacy and task performance among employees who are indirectly exposed to such behavior but not directly targeted.Furthermore,self-efficacy serves as a mediator between vicarious abusive supervision and task performance;however,this mediating effect is attenuated for employees with a high promotion focus.These findings provide valuable theoretical and practical insights,particularly in the domain of organizational behavior,by emphasizing the critical role of promotion focus in mitigating the negative effects of vicarious abusive supervision.This research contributes to the organizational behavior literature by shifting the focus from the traditional supervisor-subordinate dynamic to a third-party perspective,thereby enriching our understanding of how vicarious abusive supervision impacts employees within organizational settings.The study underscores the importance of self-efficacy and promotion focus as key factors in unethical leadership contexts.展开更多
Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction ...Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience.展开更多
The construction of ideological-political education within foreign language courses requires an integrated approach that encompasses value shaping,knowledge transfer,and competence cultivation.A critical challenge in ...The construction of ideological-political education within foreign language courses requires an integrated approach that encompasses value shaping,knowledge transfer,and competence cultivation.A critical challenge in this domain is the effective design and implementation of tasks that instill values,while also synergizing with acquiring knowledge and enhancing competencies.This paper delves into the philosophical underpinnings and operational principles of value-shaping task design and its practical application within the context of foreign language teaching.Utilizing Contemporary College English(Integrated Coursebook 3)as a case study,the paper explores value shaping-based task design in ideological-political education of foreign language courses,with the aim of providing references for the construction of ideological-political education in foreign language teaching.展开更多
Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project man...Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.展开更多
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention...Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.展开更多
Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address...Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address these issues.To enable efficient online task allocation,a reachable region prediction strategy based on fully connected neural networks(FCNNs)is developed.This strategy integrates high-fidelity data generated from the golden section method and low-fidelity data from geometric approximation in an optimal mixing ratio to form multi-fidelity samples,significantly enhancing prediction accuracy and efficiency under limited high-fidelity samples.These predictions are then incorporated into the coalition formation game framework.A tabu search mechanism guided by the reachable region center directs munitions to execute tasks within their respective reachable regions,mitigating redundant operations on ineffective coalition structures.Furthermore,an adaptive guidance coalition formation strategy optimizes allocation plans by leveraging the hit probabilities of munitions,replacing traditional random coalition formation methods.Simulation results demonstrate that RRGDCF surpasses the contract network protocol and traditional coalition formation game algorithms in optimality and computational efficiency.Hardware experiments further validate the method's practicality in dynamic scenarios.展开更多
This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task...This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task allocation for vigilance roles and the coverage planning of the perception ranges.Firstly,vigilance behavioral patterns and processes in animal populations within natural habitats are investigated.Inspired by these biological vigilance behaviors,an efficient vigilance task allocation model for MAS is proposed.Secondly,the subsequent optimization of task layouts can achieve efficient surveillance coverage with fewer agents,minimizing resource consumption.Thirdly,an improved particle swarm optimization(IPSO)algorithm is proposed,which incorporates fitness-driven adaptive inertia weight dynamics.According to simulation analysis and comparative studies,optimal parameter configurations for genetic algorithm(GA)and IPSO are determined.Finally,the results indicate the proposed IPSO's superior performance to both GA and standard particle swarm optimization(PSO)in vigilance task allocation optimization,with satisfying advantages in computational efficiency and solution quality.展开更多
BACKGROUND Patients with major depression(MD)exhibit conditional reasoning dysfunction;however,no studies on the event-related potential(ERP)characteristics of conditional reasoning in MD have been reported.AIM To inv...BACKGROUND Patients with major depression(MD)exhibit conditional reasoning dysfunction;however,no studies on the event-related potential(ERP)characteristics of conditional reasoning in MD have been reported.AIM To investigate the ERP characteristics of conditional reasoning in MD patients and explore the neural mechanism of cognitive processing.METHODS Thirty-four patients with MD and 34 healthy controls(HCs)completed ERP measurements while performing the Wason selection task(WST).The clusterbased permutation test in FieldTrip was used to compare the differences in the mean amplitudes between the patients with MD and HCs on the ERP components under different experimental conditions.Behavioral data[accuracy(ACC)and reaction times(RTs)],the ERP P100 and late positive potentials(LPPs)were analyzed.RESULTS Although the mean ACC was greater and the mean of RTs was shorter in HCs than in MD patients,the differences were not statistically significant.However,across both groups,the ACC in the precautionary WST was greater than that in the other tasks,and the RTs in the abstract task were greater than those in the other tasks.Importantly,compared with that of HCs,the P100 of the left centroparietal sites was significantly increased,and the early LPP was attenuated at parietal sites and increased at left frontocentral sites;the medium LPP and late LPP were increased at the left frontocentral sites.CONCLUSION Patients with MD have conditional reasoning dysfunction and exhibit abnormal ERP characteristics evoked by the WST,which suggests neural correlates of abnormalities in conditional reasoning function in MD patients.展开更多
Cooperative task assignment is one of the key research focuses in the field of unmanned aerial vehicles(UAVs). In this paper, an energy learning hyper-heuristic(EL-HH) algorithm is proposed to address the cooperative ...Cooperative task assignment is one of the key research focuses in the field of unmanned aerial vehicles(UAVs). In this paper, an energy learning hyper-heuristic(EL-HH) algorithm is proposed to address the cooperative task assignment problem of heterogeneous UAVs under complex constraints. First, a mathematical model is designed to define the scenario, complex constraints, and objective function of the problem. Then, the scheme encoding, the EL-HH strategy, multiple optimization operators, and the task sequence and time adjustment strategies are designed in the EL-HH algorithm. The scheme encoding is designed with three layers: task sequence, UAV sequence, and waiting time. The EL-HH strategy applies an energy learning method to adaptively adjust the energies of operators, thereby facilitating the selection and application of operators. Multiple optimization operators can update schemes in different ways, enabling the algorithm to fully explore the solution space. Afterward, the task order and time adjustment strategies are designed to adjust task order and insert waiting time. Through the iterative optimization process, a satisfactory assignment scheme is ultimately produced. Finally, simulation and experiment verify the effectiveness of the proposed algorithm.展开更多
With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the ...With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space,ground,and user segments.This study presents a novel intent-driven task-oriented network(IDTN)framework to address task scheduling and resource allocation challenges in SINs.The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments.To manage the variability of random task arrivals and dynamic resources,a context-aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty.Simulation results demonstrate the effectiveness of the proposed IDTN framework.Compared with conventional baseline methods,the framework achieves significant performance improvements,including a 4.4%-28.9%increase in average system reward,a 6.2%-34.5%improvement in resource utilization,and a 5.6%-35.7%enhancement in user satisfaction.The proposed framework is expected to facilitate the integration and orchestration of space-based platforms.展开更多
基金Supported by the Capital Health Development Research Project,No.2016-1-2121.Institutional review。
文摘BACKGROUND Illness anxiety disorder(IAD)is a common,distressing,and debilitating condition with the key feature being a persistent conviction of the possibility of having one or more serious or progressive physical disorders.Because eye movements are guided by visual-spatial attention,eye-tracking technology is a comparatively direct,continuous measure of attention direction and speed when stimuli are oriented.Researchers have tried to identify selective visual attention biases by tracking eye movements within dot-probe paradigms because dot-probe paradigm can distinguish these attentional biases more clearly.AIM To examine the association between IAD and biased processing of illness-related information.METHODS A case-control study design was used to record eye movements of individuals with IAD and healthy controls while participants viewed a set of pictures from four categories(illness-related,socially threatening,positive,and neutral images).Biases in initial orienting were assessed from the location of the initial shift in gaze,and biases in the maintenance of attention were assessed from the duration of gaze that was initially fixated on the picture per image category.RESULTS The eye movement of the participants in the IAD group was characterized by an avoidance bias in initial orienting to illness-related pictures.There was no evidence of individuals with IAD spending significantly more time viewing illness-related images compared with other images.Patients with IAD had an attention bias at the early stage and overall attentional avoidance.In addition,this study found that patients with significant anxiety symptoms showed attention bias in the late stages of attention processing.CONCLUSION Illness-related information processing biases appear to be a robust feature of IAD and may have an important role in explaining the etiology and maintenance of the disorder.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金supported by the Project of Science and Technology Research Program of Chongqing Education Commission of China(No.KJZD-K202401105)High-Quality Development Action Plan for Graduate Education at Chongqing University of Technology(No.gzljg2023308,No.gzljd2024204)+1 种基金the Graduate Innovation Program of Chongqing University of Technology(No.gzlcx20233197)Yunnan Provincial Key R&D Program(202203AA080006).
文摘Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms.
基金supported and funded by theDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23082).
文摘Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability.In this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task completion.However,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource wastage.Additionally,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities problem.This paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH scenarios.Additionally,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH scenarios.The performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed approach.The simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
基金supported by the National Natural Science Foundation of China(32060199,32360197,31971035,and 31771182)the Jiangxi Province Natural Science Foundation(20224ACB206016).
文摘Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior.It often happens that humans and animals make decisions and prepare actions under uncertain situations.Uncertainty would significantly affect the state of animals’minds,but may not be reflected in behavior.How to“read animals’mind state”under different situations is a challenge.Here,we report that neuronal activity in the medial prefrontal cortex(mPFC)of rats can reflect the environmental uncertainty when the task situation changes from certain to uncertain.Rats were trained to perform behavioral tasks under certain and uncertain situations.Under certain situations,rats were required to simply repeat two nose-poking actions that each triggered short auditory tone feedback(single-task situation).Whereas under the uncertain situation,the feedback could randomly be either the previous tone or a short musical rhythm.No additional action was required upon the music feedback,and the same secondary nose-poking action was required upon the tone feedback(dual-task situation);therefore,the coming task was uncertain before action initiation.We recorded single-unit activity from the mPFC when the rats were performing the tasks.We found that in the dual task,when uncertainty was introduced,many mPFC neurons were actively engaged in dealing with the uncertainty before the task initiation,suggesting that the rats could be aware of the task situation change and encode the information in the mPFC before the action of task initiation.
基金supported by Guangdong Basic and Applied Basic Research Project(No.2025A1515012874)Foundation of Yunnan Key Laboratory of Service Computing(No.YNSC24115)+5 种基金Research Project of Pazhou Lab for Excellent Young Scholars(No.PZL2021KF0024)Guangdong Undergraduate Teaching Quality and Teaching Reform ProjectUniversity Research Project of Guangzhou Education Bureau(No.2024312189)Guangzhou Basic and Applied Basic Research Project(No.SL2024A03J00397)National Natural Science Foundation of China(No.62272113)Guangzhou Basic Research Program(No.2024A03J0398)。
文摘Low Earth Orbit(LEO)satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources.Existing studies integrate edge computing with LEO satellite networks to optimize task offloading;however,they often overlook the impact of frequent topology changes,unstable transmission links,and intermittent satellite visibility,leading to task execution failures and increased latency.To address these issues,this paper proposes a dynamic integrated spaceground computing framework that optimizes task offloading under LEO satellite mobility constraints.We design an adaptive task migration strategy through inter-satellite links when target satellites become inaccessible.To enhance data transmission reliability,we introduce a communication stability constraint based on transmission bit error rate(BER).Additionally,we develop a genetic algorithm(GA)-based task scheduling method that dynamically allocates computing resources while minimizing latency and energy consumption.Our approach jointly considers satellite computing capacity,link stability,and task execution reliability to achieve efficient task offloading.Experimental results demonstrate that the proposed method significantly improves task execution success rates,reduces system overhead,and enhances overall computational efficiency in LEO satellite networks.
基金supported by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)the Science and Technology Research Program of Henan Province of China(232102210134,182102210130)Key Research Projects of Henan Provincial Universities(25B520005).
文摘With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method.
文摘Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surveys from 337 employees across diverse organizations.The results indicate that vicarious abusive supervision significantly undermines both self-efficacy and task performance among employees who are indirectly exposed to such behavior but not directly targeted.Furthermore,self-efficacy serves as a mediator between vicarious abusive supervision and task performance;however,this mediating effect is attenuated for employees with a high promotion focus.These findings provide valuable theoretical and practical insights,particularly in the domain of organizational behavior,by emphasizing the critical role of promotion focus in mitigating the negative effects of vicarious abusive supervision.This research contributes to the organizational behavior literature by shifting the focus from the traditional supervisor-subordinate dynamic to a third-party perspective,thereby enriching our understanding of how vicarious abusive supervision impacts employees within organizational settings.The study underscores the importance of self-efficacy and promotion focus as key factors in unethical leadership contexts.
基金supported by National Taiwan University Hospital Yunlin Branch Project NTUHYL 110.C018National Science and Technology Council,Taiwan.
文摘Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience.
文摘The construction of ideological-political education within foreign language courses requires an integrated approach that encompasses value shaping,knowledge transfer,and competence cultivation.A critical challenge in this domain is the effective design and implementation of tasks that instill values,while also synergizing with acquiring knowledge and enhancing competencies.This paper delves into the philosophical underpinnings and operational principles of value-shaping task design and its practical application within the context of foreign language teaching.Utilizing Contemporary College English(Integrated Coursebook 3)as a case study,the paper explores value shaping-based task design in ideological-political education of foreign language courses,with the aim of providing references for the construction of ideological-political education in foreign language teaching.
文摘Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)the National Natural Science Foundation of China(Key Program)(62136003)+2 种基金the National Natural Science Foundation of China(62394345)the Major Science and Technology Projects of Longmen Laboratory(LMZDXM202206)the Fundamental Research Funds for the Central Universities.
文摘Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.
基金supported by the National Natural Science Foundation of China(Grant 52372347,52425211,52272360)。
文摘Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address these issues.To enable efficient online task allocation,a reachable region prediction strategy based on fully connected neural networks(FCNNs)is developed.This strategy integrates high-fidelity data generated from the golden section method and low-fidelity data from geometric approximation in an optimal mixing ratio to form multi-fidelity samples,significantly enhancing prediction accuracy and efficiency under limited high-fidelity samples.These predictions are then incorporated into the coalition formation game framework.A tabu search mechanism guided by the reachable region center directs munitions to execute tasks within their respective reachable regions,mitigating redundant operations on ineffective coalition structures.Furthermore,an adaptive guidance coalition formation strategy optimizes allocation plans by leveraging the hit probabilities of munitions,replacing traditional random coalition formation methods.Simulation results demonstrate that RRGDCF surpasses the contract network protocol and traditional coalition formation game algorithms in optimality and computational efficiency.Hardware experiments further validate the method's practicality in dynamic scenarios.
基金The National Natural Science Foundation of China(62203015,62233001,62273351)The Beijing Natural Science Foundation(4242038)。
文摘This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task allocation for vigilance roles and the coverage planning of the perception ranges.Firstly,vigilance behavioral patterns and processes in animal populations within natural habitats are investigated.Inspired by these biological vigilance behaviors,an efficient vigilance task allocation model for MAS is proposed.Secondly,the subsequent optimization of task layouts can achieve efficient surveillance coverage with fewer agents,minimizing resource consumption.Thirdly,an improved particle swarm optimization(IPSO)algorithm is proposed,which incorporates fitness-driven adaptive inertia weight dynamics.According to simulation analysis and comparative studies,optimal parameter configurations for genetic algorithm(GA)and IPSO are determined.Finally,the results indicate the proposed IPSO's superior performance to both GA and standard particle swarm optimization(PSO)in vigilance task allocation optimization,with satisfying advantages in computational efficiency and solution quality.
基金Supported by Wuxi Taihu Talent Project,No.WXTTP 2021the General Scientific Research Program of Wuxi Municipal Health Commission,No.M202447.
文摘BACKGROUND Patients with major depression(MD)exhibit conditional reasoning dysfunction;however,no studies on the event-related potential(ERP)characteristics of conditional reasoning in MD have been reported.AIM To investigate the ERP characteristics of conditional reasoning in MD patients and explore the neural mechanism of cognitive processing.METHODS Thirty-four patients with MD and 34 healthy controls(HCs)completed ERP measurements while performing the Wason selection task(WST).The clusterbased permutation test in FieldTrip was used to compare the differences in the mean amplitudes between the patients with MD and HCs on the ERP components under different experimental conditions.Behavioral data[accuracy(ACC)and reaction times(RTs)],the ERP P100 and late positive potentials(LPPs)were analyzed.RESULTS Although the mean ACC was greater and the mean of RTs was shorter in HCs than in MD patients,the differences were not statistically significant.However,across both groups,the ACC in the precautionary WST was greater than that in the other tasks,and the RTs in the abstract task were greater than those in the other tasks.Importantly,compared with that of HCs,the P100 of the left centroparietal sites was significantly increased,and the early LPP was attenuated at parietal sites and increased at left frontocentral sites;the medium LPP and late LPP were increased at the left frontocentral sites.CONCLUSION Patients with MD have conditional reasoning dysfunction and exhibit abnormal ERP characteristics evoked by the WST,which suggests neural correlates of abnormalities in conditional reasoning function in MD patients.
基金funded by the National Natural Science Foundation of China (Grant No.62203217)the Jiangsu Province Basic Research Program Natural Science Foundation (Grant No.BK20220885)+3 种基金the Hong Kong,Macao and Taiwan Science and Technology Cooperation Project of Special Foundation in Jiangsu Science and Technology Plan (Grant No.BZ2023057)the Fundamental Research Funds for the Central Universities (Grant No.NJ2024012)the China Postdoctoral Science Foundation (Grant No.GZC20242230)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No.KYCX24_0586)。
文摘Cooperative task assignment is one of the key research focuses in the field of unmanned aerial vehicles(UAVs). In this paper, an energy learning hyper-heuristic(EL-HH) algorithm is proposed to address the cooperative task assignment problem of heterogeneous UAVs under complex constraints. First, a mathematical model is designed to define the scenario, complex constraints, and objective function of the problem. Then, the scheme encoding, the EL-HH strategy, multiple optimization operators, and the task sequence and time adjustment strategies are designed in the EL-HH algorithm. The scheme encoding is designed with three layers: task sequence, UAV sequence, and waiting time. The EL-HH strategy applies an energy learning method to adaptively adjust the energies of operators, thereby facilitating the selection and application of operators. Multiple optimization operators can update schemes in different ways, enabling the algorithm to fully explore the solution space. Afterward, the task order and time adjustment strategies are designed to adjust task order and insert waiting time. Through the iterative optimization process, a satisfactory assignment scheme is ultimately produced. Finally, simulation and experiment verify the effectiveness of the proposed algorithm.
基金supported by the National Key Research and Development Program of China(2020YFB1807700)Innovation Capability Support Program of Shaanxi(2024RS-CXTD-01).
文摘With the rapid advancement of satellite communication technologies,space information networks(SINs)have become essential infrastructure for complex service delivery and cross-domain task coordination,facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space,ground,and user segments.This study presents a novel intent-driven task-oriented network(IDTN)framework to address task scheduling and resource allocation challenges in SINs.The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments.To manage the variability of random task arrivals and dynamic resources,a context-aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty.Simulation results demonstrate the effectiveness of the proposed IDTN framework.Compared with conventional baseline methods,the framework achieves significant performance improvements,including a 4.4%-28.9%increase in average system reward,a 6.2%-34.5%improvement in resource utilization,and a 5.6%-35.7%enhancement in user satisfaction.The proposed framework is expected to facilitate the integration and orchestration of space-based platforms.