期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)revealed by laser-based angle-resolved photoemission spectroscopy
1
作者 Hao Chen Jumin Shi +22 位作者 Xiangyu Luo Yinghao Li Yiwen Chen Chaohui Yin Yingjie Shu Jiuxiang Zhang Taimin Miao Bo Liang Wenpei Zhu Neng Cai Xiaolin Ren Chengtian Lin Shenjin Zhang Zhimin Wang Fengfeng Zhang Feng Yang Qinjun Peng Zuyan Xu Guodong Liu Hanqing Mao Xintong Li Lin Zhao X.J.Zhou 《Chinese Physics B》 2025年第7期141-146,共6页
The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectr... The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors. 展开更多
关键词 BI2223 angle-resolved photoemission spectroscopy nodal electron dynamics doping evolution
原文传递
Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1-xKxFe2As2:a Heat Transport Study
2
作者 洪晓晨 王爱峰 +5 位作者 张震 潘坚 何兰坡 罗习刚 陈仙辉 李世燕 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期131-134,共4页
We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A sm... We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A small residual linear term K0/T (=0.035 m W.K-2 cm-1) appears at xz0.826, and it increases slowly up to x=0.974, followed by a substantial increase of more than 20 times to of K0/T clearly shows that the nodal gap appears near x surface topology. The small values of K0/T from x=0.826 the pure KFe2As2 (x=1.0). This doping dependence = 0.8, possibly associated with the change of Fermi to 0.974 are consistent with the Y-shaped nodal s- wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at x=0.9. Furthermore, the substantial increase of K0/T from x=0.974 to 1.0 is inconsistent with a symmetry-imposed d-wave gap in KFe2 As2, and a possible nodal gap structure in KFe2As2 is discussed. 展开更多
关键词 As doping evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba x)KxFe2As2:a Heat Transport Study
原文传递
Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
3
《Science Foundation in China》 CAS 2017年第3期12-12,共1页
Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and H... Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of 展开更多
关键词 Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部