A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho...A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.展开更多
A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with th...A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with the strongest excitation and emission peaks of 360 nm and 460 nm,and maintained over 90%of the maximum fluorescence intensity in a wide p H range of 3–12.The metal ions detectability of Ni-CQDs was enhanced by Ni doping and functional groups modification,and the rapid and selective detection of Fe^(3+)and Cu^(2+)ions was achieved with Ni-CQDs through dynamic and static quenching mechanism,respectively.On one hand,the energy band gap of Ni-CQDs was regulated by Ni doping,so that excited electrons in Ni-CQDs were able to transfer to Fe^(3+)easily.On the other hand,the abundant functional groups promoted the generation of static quenching complexation between Cu^(2+)and Ni-CQDs.In metal ions detection,the linear quantitation range of Fe^(3+)and Cu^(2+)were 100–1000μM(R^(2)=0.9955)and 300–900μM(R^(2)=0.9978),respectively.The limits of detection(LOD)were calculated as 10.17 and 7.88μM,respectively.Moreover,the fluorescence quenched by Cu^(2+)could be recovered by EDTA2-due to the destruction of the static quenching complexation.In this way,NiCQDs showed the ability to identify the two metal ions to a certain degree under the condition of Fe^(3+)and Cu^(2+)coexistent.This work paves the way of facile multiple metal ion detection with high sensitivity.展开更多
文摘A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.
基金the National Natural Science Foundation of China(Nos.21776302 and 21776308)the Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ033)。
文摘A novel Ni doped carbon quantum dots(Ni-CQDs)fluorescence probe was synthesized by facile electrolysis of monoatomic Ni dispersed porous carbon(Ni–N–C).The obtained Ni-CQDs showed a high quantum yield of 6.3%with the strongest excitation and emission peaks of 360 nm and 460 nm,and maintained over 90%of the maximum fluorescence intensity in a wide p H range of 3–12.The metal ions detectability of Ni-CQDs was enhanced by Ni doping and functional groups modification,and the rapid and selective detection of Fe^(3+)and Cu^(2+)ions was achieved with Ni-CQDs through dynamic and static quenching mechanism,respectively.On one hand,the energy band gap of Ni-CQDs was regulated by Ni doping,so that excited electrons in Ni-CQDs were able to transfer to Fe^(3+)easily.On the other hand,the abundant functional groups promoted the generation of static quenching complexation between Cu^(2+)and Ni-CQDs.In metal ions detection,the linear quantitation range of Fe^(3+)and Cu^(2+)were 100–1000μM(R^(2)=0.9955)and 300–900μM(R^(2)=0.9978),respectively.The limits of detection(LOD)were calculated as 10.17 and 7.88μM,respectively.Moreover,the fluorescence quenched by Cu^(2+)could be recovered by EDTA2-due to the destruction of the static quenching complexation.In this way,NiCQDs showed the ability to identify the two metal ions to a certain degree under the condition of Fe^(3+)and Cu^(2+)coexistent.This work paves the way of facile multiple metal ion detection with high sensitivity.