Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at...The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.展开更多
Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti...Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.展开更多
To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,s...To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b...The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.展开更多
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions...To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.展开更多
Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection me...Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.展开更多
The partitioning of membrane proteins into lipid domains in cellular membranes is closely associated with the realization of the protein functions and it is influenced by various factors such as the post-translational...The partitioning of membrane proteins into lipid domains in cellular membranes is closely associated with the realization of the protein functions and it is influenced by various factors such as the post-translational modification of palmitoylation.However,the molecular mechanism of the effect of palmitoylation on membrane protein partitioning into the lipid domains remains elusive.In this work,taking human peripheral myelin protein 22(PMP22)as an example,we employ coarse-grained molecular dynamics simulations to investigate the partitioning of both the natural PMP22 and the palmitoylated PMP22(pal-PMP22)into the lipid domains of model myelin membranes.The results indicate that palmitoylation drives PMP22 to localize at the boundary of the liquid-ordered(Lo)and liquid-disordered(Ld)domains and increases the possibility of PMP22 partitioning into the Lo domains by changing the hydrophobic length of the proteins and perturbing the ordered packing of tails of the saturated lipids in the Lo domains.This work offers some novel insights into the role of palmitoylation in modulating the function of membrane proteins in cellular membranes.展开更多
The rapid development of the industrial internet of things(IIoT)has brought huge benefits to factories equipped with IIoT technology,each of which represents an IIoT domain.More and more domains are choosing to cooper...The rapid development of the industrial internet of things(IIoT)has brought huge benefits to factories equipped with IIoT technology,each of which represents an IIoT domain.More and more domains are choosing to cooperate with each other to produce better products for greater profits.Therefore,in order to protect the security and privacy of IIoT devices in cross-domain communication,lots of cross-domain authentication schemes have been proposed.However,most schemes expose the domain to which the IIoT device belongs,or introduce a single point of failure in multi-domain cooperation,thus introducing unpredictable risks to each domain.We propose a more secure and efficient domain-level anonymous cross-domain authentication(DLCA)scheme based on alliance blockchain.The proposed scheme uses group signatures with decentralized tracing technology to provide domain-level anonymity to each IIoT device and allow the public to trace the real identity of the malicious pseudonym.In addition,DLCA takes into account the limited resource characteristics of IIoT devices to design an efficient cross-domain authentication protocol.Security analysis and performance evaluation show that the proposed scheme can be effectively used in the cross-domain authentication scenario of industrial internet of things.展开更多
In recent years,the heterogeneous SAR image classification task of"training on simulated data and testing on measured data"has garnered increasing attention in the field of Synthetic Aperture Radar Automatic...In recent years,the heterogeneous SAR image classification task of"training on simulated data and testing on measured data"has garnered increasing attention in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR).Although current mainstream domain adaptation methods have made significant breakthroughs in addressing domain shift problems,the escalating model complexity and task complexity have constrained their deployment in real-world applications.To tackle this challenge,this paper proposes a domain adaptation framework based on linear-kernel Maximum Mean Discrepancy(MMD),integrated with a near-zero-cost pseudo-label denoising technique leveraging deep feature clustering.Our method completely eliminates the need for data augmentation and handcrafted feature design,achieving endto-end pseudo-label self-training.Competitive performance is demonstrated across three typical scenarios in the SAMPLE dataset,with the highest accuracy of 98.65%achieved in ScenarioⅢ.The relevant code is available at:https://github.com/TheGreatTreatsby/SAMPLE_MMD.展开更多
The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modi...The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modification treatment resulted in the formation of a smooth and continuous weakly magnetic grain boundary layer and the(Nd,Pr,Dy)_(2)Fe_(14)B main phase with a high magnetocrystalline anisotropy field,leading to an increased coercivity of 23 kOe.MOKE observations revealed that the dynamic evolution of the maze domain area under an external magnetic field varied significantly between the original and modified magnets.Compared with the original magnets,the modified magnets exhibited a slower decrease in maze domain area during magnetization and a slower increase during reverse magnetization,contributing to the observed coercivity enhancement.展开更多
Sea-surface wind is a vital meteorological element in marine activities and climate research.This study proposed the spectral attention enhanced multidimensional feature fusion convolutional long short-term memory(LST...Sea-surface wind is a vital meteorological element in marine activities and climate research.This study proposed the spectral attention enhanced multidimensional feature fusion convolutional long short-term memory(LSTM)network(SAMFF-Conv-LSTM),a novel approach for sea-surface wind-speed prediction that emphasizes the temporal characteristics of data samples.The model incorporates the Fourier transform to extract time-and frequency-domain features from wave and wind variables.For the 12 h prediction,the SAMFF-ConvLSTM achieved a correlation coefficient of 0.960 and a root mean square error(RMSE)of 1.350 m/s,implying a high prediction accuracy.For the 24 h prediction,the RMSE of the SAMFF-ConvLSTM was reduced by 38.11%,14.26%,and 13.36%compared with those of the convolutional neural network,gated recurrent units,and convolutional LSTM(ConvLSTM),respectively.These results confirm the superior reliability and accuracy of the SAMFF-ConvLSTM over traditional models in theoretical and practical applications.展开更多
Magnon frequency combs have garnered significant attention due to their wide-ranging potential applications,primarily generated by the interplay between spin waves and oscillating magnetic textures.Developing an easil...Magnon frequency combs have garnered significant attention due to their wide-ranging potential applications,primarily generated by the interplay between spin waves and oscillating magnetic textures.Developing an easily achievable magnon frequency comb with directly tunable comb spacing is pivotal for broadening its utility.In this study,we engineered a Bloch-type magnetic domain wall with a stable structure and fixed position by employing a dual-pinning approach utilizing artificial structural defects and stray fields.We established a magnetic domain wall oscillation mode based on resonant Larmor precession,serving as the foundation for a magnon frequency comb derived from magnetic domain walls.By leveraging the locally distributed Oersted field generated by an alternating current,we achieved precise control over the oscillation frequency of the domain wall,thereby realizing a magnon frequency comb with directly tunable comb spacing.The insights from this research offer a promising shortcut for exploring frequency combs based on the interaction between spin waves and magnetic domain walls.展开更多
We investigate the inertial domain wall(DW)dynamics driven by spin-polarized current in ferromagnets.The exact solutions reveal an upper limit for DW velocity,given by V≤1/√ατ.This indicates that damping and inert...We investigate the inertial domain wall(DW)dynamics driven by spin-polarized current in ferromagnets.The exact solutions reveal an upper limit for DW velocity,given by V≤1/√ατ.This indicates that damping and inertia become the key factors in achieving higher DW speeds.For the case of uniaxial anisotropy,we analyze the effects of inertia and current on DW dynamics.Due to inertia,the DW velocity,width,rotation frequency,and wave number are mutually coupled.When the DW width varies slightly,the velocity decreases rapidly while the magnetization precession frequency increases sharply with the inertia term.However,once the rotation frequency exceeds its maximum value,both the DW velocity and rotation frequency gradually decline.Regarding current-driven dynamics,we identify a critical current j1cthat directly triggers the Walker breakdown.For currents below this threshold j_(1)<j_(1c),the absolute DW velocity increases with current,whereas it decreases for j_(1)>j_(1c).During this process,the DW velocity rapidly peaks under current drive,accompanied by the magnetization rotation frequency nearing its maximum and minimal variation in DW width.These results suggest that the DW behaves like a classical rigid body,reaching its maximum velocity as it approaches peak rotational speed.For biaxial anisotropy,we derive analytical solutions.The competition between hard-axis anisotropy and inertia causes the DW magnetization to lose its spiral structure and rotational symmetry.The inertia effect leads to a slow initial decrease followed by a rapid increase in DW width,whereas current modulation gradually widens the DW.The analytical solution also reveals another critical current,j_(1 max)=√(α/τ)/β,which scales with the square root of the inertia-to-damping ratio and is inversely proportional to the nonadiabatic spin-transfer torque parameterβ.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金supported by the National Natural Science Foundation of China(22265021,52231007,and 12327804)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.
基金supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science COMBS(CE230100006)the Australian Research Council grants DP220100488 and DE230100964funded by the Australian Government.
文摘Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
基金Australian Research Council Project(FL-170100117).
文摘To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金supported by the TARCC,Welch Foundation Award(I-1724)the Decherd Foundationthe Pape Adams Foundation,NIH grants NS092616,NS127375,NS117065,NS111776。
文摘The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
文摘To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group under grant number(GRP.2/663/46).
文摘Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ25A040005)the National Natural Science Foundation of China(Grant No.11674287).
文摘The partitioning of membrane proteins into lipid domains in cellular membranes is closely associated with the realization of the protein functions and it is influenced by various factors such as the post-translational modification of palmitoylation.However,the molecular mechanism of the effect of palmitoylation on membrane protein partitioning into the lipid domains remains elusive.In this work,taking human peripheral myelin protein 22(PMP22)as an example,we employ coarse-grained molecular dynamics simulations to investigate the partitioning of both the natural PMP22 and the palmitoylated PMP22(pal-PMP22)into the lipid domains of model myelin membranes.The results indicate that palmitoylation drives PMP22 to localize at the boundary of the liquid-ordered(Lo)and liquid-disordered(Ld)domains and increases the possibility of PMP22 partitioning into the Lo domains by changing the hydrophobic length of the proteins and perturbing the ordered packing of tails of the saturated lipids in the Lo domains.This work offers some novel insights into the role of palmitoylation in modulating the function of membrane proteins in cellular membranes.
文摘The rapid development of the industrial internet of things(IIoT)has brought huge benefits to factories equipped with IIoT technology,each of which represents an IIoT domain.More and more domains are choosing to cooperate with each other to produce better products for greater profits.Therefore,in order to protect the security and privacy of IIoT devices in cross-domain communication,lots of cross-domain authentication schemes have been proposed.However,most schemes expose the domain to which the IIoT device belongs,or introduce a single point of failure in multi-domain cooperation,thus introducing unpredictable risks to each domain.We propose a more secure and efficient domain-level anonymous cross-domain authentication(DLCA)scheme based on alliance blockchain.The proposed scheme uses group signatures with decentralized tracing technology to provide domain-level anonymity to each IIoT device and allow the public to trace the real identity of the malicious pseudonym.In addition,DLCA takes into account the limited resource characteristics of IIoT devices to design an efficient cross-domain authentication protocol.Security analysis and performance evaluation show that the proposed scheme can be effectively used in the cross-domain authentication scenario of industrial internet of things.
文摘In recent years,the heterogeneous SAR image classification task of"training on simulated data and testing on measured data"has garnered increasing attention in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR).Although current mainstream domain adaptation methods have made significant breakthroughs in addressing domain shift problems,the escalating model complexity and task complexity have constrained their deployment in real-world applications.To tackle this challenge,this paper proposes a domain adaptation framework based on linear-kernel Maximum Mean Discrepancy(MMD),integrated with a near-zero-cost pseudo-label denoising technique leveraging deep feature clustering.Our method completely eliminates the need for data augmentation and handcrafted feature design,achieving endto-end pseudo-label self-training.Competitive performance is demonstrated across three typical scenarios in the SAMPLE dataset,with the highest accuracy of 98.65%achieved in ScenarioⅢ.The relevant code is available at:https://github.com/TheGreatTreatsby/SAMPLE_MMD.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3500300,2023YFB3507000,and 2023XYJG0001-01-03)the National Natural Science Foundation of China(Grant No.52171167)Inner Mongolia Northern Rare Earth Advanced Materials Technology Innovation Co.,Ltd.Project(Grant No.CXZX-B-202304-0004).
文摘The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modification treatment resulted in the formation of a smooth and continuous weakly magnetic grain boundary layer and the(Nd,Pr,Dy)_(2)Fe_(14)B main phase with a high magnetocrystalline anisotropy field,leading to an increased coercivity of 23 kOe.MOKE observations revealed that the dynamic evolution of the maze domain area under an external magnetic field varied significantly between the original and modified magnets.Compared with the original magnets,the modified magnets exhibited a slower decrease in maze domain area during magnetization and a slower increase during reverse magnetization,contributing to the observed coercivity enhancement.
基金supported by the National Natural Science Foundation(No.42176020)the Open Research Fund of State Key Laboratory of Target Vulnerability Assessment(No.YSX2024KFYS001)+1 种基金the National Key Research and Development Program(No.2022YFC3105002)the Project from Key Laboratory of Marine Environmental Information Technology(No.2023GFW-1047).
文摘Sea-surface wind is a vital meteorological element in marine activities and climate research.This study proposed the spectral attention enhanced multidimensional feature fusion convolutional long short-term memory(LSTM)network(SAMFF-Conv-LSTM),a novel approach for sea-surface wind-speed prediction that emphasizes the temporal characteristics of data samples.The model incorporates the Fourier transform to extract time-and frequency-domain features from wave and wind variables.For the 12 h prediction,the SAMFF-ConvLSTM achieved a correlation coefficient of 0.960 and a root mean square error(RMSE)of 1.350 m/s,implying a high prediction accuracy.For the 24 h prediction,the RMSE of the SAMFF-ConvLSTM was reduced by 38.11%,14.26%,and 13.36%compared with those of the convolutional neural network,gated recurrent units,and convolutional LSTM(ConvLSTM),respectively.These results confirm the superior reliability and accuracy of the SAMFF-ConvLSTM over traditional models in theoretical and practical applications.
基金supported by the National Natural Science Foundation of China (Grant No.12364020)the Scientific and Technological Development Plan of Jilin Province(Grant No.20240101295JC)+1 种基金the Science and Technology Research and Planning Project of Jilin Provincial Department of Education (Grant No.JJKH20230611KJ)the Applied Foundation Research Project (Talent Funding Project) of Yanbian University (Grant No.ydkj202241)。
文摘Magnon frequency combs have garnered significant attention due to their wide-ranging potential applications,primarily generated by the interplay between spin waves and oscillating magnetic textures.Developing an easily achievable magnon frequency comb with directly tunable comb spacing is pivotal for broadening its utility.In this study,we engineered a Bloch-type magnetic domain wall with a stable structure and fixed position by employing a dual-pinning approach utilizing artificial structural defects and stray fields.We established a magnetic domain wall oscillation mode based on resonant Larmor precession,serving as the foundation for a magnon frequency comb derived from magnetic domain walls.By leveraging the locally distributed Oersted field generated by an alternating current,we achieved precise control over the oscillation frequency of the domain wall,thereby realizing a magnon frequency comb with directly tunable comb spacing.The insights from this research offer a promising shortcut for exploring frequency combs based on the interaction between spin waves and magnetic domain walls.
基金supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,China(Grant No.KF202203)the Tianjin Natural Science(Grant No.25JCQNJC00990)。
文摘We investigate the inertial domain wall(DW)dynamics driven by spin-polarized current in ferromagnets.The exact solutions reveal an upper limit for DW velocity,given by V≤1/√ατ.This indicates that damping and inertia become the key factors in achieving higher DW speeds.For the case of uniaxial anisotropy,we analyze the effects of inertia and current on DW dynamics.Due to inertia,the DW velocity,width,rotation frequency,and wave number are mutually coupled.When the DW width varies slightly,the velocity decreases rapidly while the magnetization precession frequency increases sharply with the inertia term.However,once the rotation frequency exceeds its maximum value,both the DW velocity and rotation frequency gradually decline.Regarding current-driven dynamics,we identify a critical current j1cthat directly triggers the Walker breakdown.For currents below this threshold j_(1)<j_(1c),the absolute DW velocity increases with current,whereas it decreases for j_(1)>j_(1c).During this process,the DW velocity rapidly peaks under current drive,accompanied by the magnetization rotation frequency nearing its maximum and minimal variation in DW width.These results suggest that the DW behaves like a classical rigid body,reaching its maximum velocity as it approaches peak rotational speed.For biaxial anisotropy,we derive analytical solutions.The competition between hard-axis anisotropy and inertia causes the DW magnetization to lose its spiral structure and rotational symmetry.The inertia effect leads to a slow initial decrease followed by a rapid increase in DW width,whereas current modulation gradually widens the DW.The analytical solution also reveals another critical current,j_(1 max)=√(α/τ)/β,which scales with the square root of the inertia-to-damping ratio and is inversely proportional to the nonadiabatic spin-transfer torque parameterβ.