Lacustrine dolomite is paid increasing attention to uncover the diagenetic water condition of paleo-lake and“dolomite problem”.Here,a dolomite nodule from the Qingshankou Formation in the Songliao Basin was analyzed...Lacustrine dolomite is paid increasing attention to uncover the diagenetic water condition of paleo-lake and“dolomite problem”.Here,a dolomite nodule from the Qingshankou Formation in the Songliao Basin was analyzed to explore the salinity,alkalinity,and redox conditions of the diagenetic water.Multiple proxies,including bulk boron(B)content,B isotope composition(δ^(11)B_(bul)),boron to gallium weight ratio(B/Ga)and carbonate oxygen isotope composition(δ^(18)O_(carb)),were used to determine the diagenetic water to be brackish-fresh.Through numerical simulation,we calculated the B contents,δ^(11)B values and B/Ga in detritus(e.g.,clay,quartz and feldspar)and dolomite as two endmembers,confirming the intense interference of clay minerals onδ^(11)B_(bul).By using the fittedδ^(11)B of dolomite endmember(20.6‰),we calculated the p H value of the diagenetic water to be 8.2.The negativeδ^(11)B value of detritus endmember(-12.9‰)might be related to the terrestrial weathering.The indicative nature of strontium to barium weight ratio(Sr/Ba)was discussed to deny its applicability as a proxy of salinity in carbonate system.High Sr/Ba ratio in this dolomite nodule indicates a sulfate-poor water condition,consistent with the iron-manganese(Fe-Mn)reduction environments reflected by the Mn/Fe molar ratio.The positive carbonate carbon isotopes(δ^(13)C_(carb),4.5‰-9.4‰)indicate that methanogenesis dominated the formation of dolomite,coinciding with the weak sulfate reduction reaction in sulfate-poor water.The growth of dolomite nodule might be related to the microbial activities of methanogen and iron reducing bacteria,which had not only maintained the salinity,p H,and redox status of the diagenetic water,but also led to a ferricmethane transition zone(FMTZ).This research depicts a scenario about the diagenetic water environment of lacustrine dolomite formed in brackish-fresh water,which is different from that occurred in sulfate-rich condition.展开更多
Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surfac...Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.展开更多
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev...To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.展开更多
The widespread dolomite of the Sinian Dengying Formation in the Sichuan Basin(China)serves as one of the most important oil and gas reservoir rocks of the basin.Well WT1,as an exploration well,is recently drilled in t...The widespread dolomite of the Sinian Dengying Formation in the Sichuan Basin(China)serves as one of the most important oil and gas reservoir rocks of the basin.Well WT1,as an exploration well,is recently drilled in the Kaijiang County,northeastern Sichuan Basin(SW China),and it drills through the Dengying Formation dolomite at the depth interval of 7500–7580 m.In this study,samples are systematically collected from the cores of that interval,followed by new analyses of carbon-oxygen isotope,major elements,trace elements,rare earth elements(REEs)and EP-MA.The Dengying Formation dolomites of Well WT1 haveδ13C values of 0.37‰to 2.91‰andδ18O values of-5.72‰to-2.73‰,indicating that the dolomitization fluid is derived from contemporary seawater in the near-surface environment,rather than the burial environment.Based on the REE patterns of EPMA-based in-situ data,we recognized the seawater-sourced components,the mixedsourced components and the terrigenous-sourced components,indicating the marine origin of the dolomite with detrital contamination and diagenetic alteration.Moreover,high Al,Th,and Zr contents indicate significant detrital contamination derived from clay and quartz minerals,and high Sr/Ba and Sr/Cu ratios imply a relatively dry depositional environment with extremely high seawater salinity,intensive evaporation,and strong influences of terrigenous sediment.展开更多
The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copo...The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer(AAAMPS)was first used as the depressant in fluorite flotation,and its effect on the flotation separation of fluorite and dolomite in sodium oleate(NaOL)system was investigated.The depression mechanism was analyzed by contact angle measurement,zeta potential test,FTIR and XPS analyses.The micro-flotation test results showed that dolomite can be inhibited in fluorite flotation system in the addition of 2 mg/L AA-AMPS and 20 mg/L NaOL at pH 10.The CaF_(2) grade increased from 49.85%in the artificial mixed mineral to 89.60%in the fluorite concentrate.The depression mechanism indicated that AA-AMPS could adsorb strongly on dolomite surface by the chelation with Ca and Mg active sites.Moreover,the further adsorption of NaOL on dolomite surface was prevented by the AA-AMPS adsorption,but that on fluorite surface was little affected,thereby increasing the difference in the hydrophobicity and floatability of the two minerals.展开更多
This paper discusses the characteristics and formation mechanism of thin dolomite reservoirs in the lower submember of the second member of the Permian Maokou Formation(lower Mao 2 Member)in the Wusheng-Tongnan area o...This paper discusses the characteristics and formation mechanism of thin dolomite reservoirs in the lower submember of the second member of the Permian Maokou Formation(lower Mao 2 Member)in the Wusheng-Tongnan area of the Sichuan Basin,SW China,through comprehensive analysis of geological,geophysical and geochemical data.The reservoir rocks of the lower Mao 2 Member are dominated by porphyritic vuggy dolomite and calcareous dolomite or dolomitic limestone,which have typical karst characteristics of early diagenetic stage.The dolomites at the edge of the karst system and in the fillings have dissolved estuaries,and the dolomite breccia has micrite envelope and rim cement at the edge,indicating that dolomitization is earlier than the early diagenetic karstification.The shoal facies laminated dolomite is primarily formed by the seepage reflux dolomitization of moderate-salinity seawater.The key factors of reservoir formation are the bioclastic shoal deposition superimposed with seepgae reflux dolomitization and the karstification of early diagenetic stage,which are locally reformed by fractures and hydrothermal processes.The development of dolomite vuggy reservoir is closely related to the upward-shallowing sequence,and mainly occurs in the late highstand of the fourth-order cycle.Moreover,the size of dolomite is closely related to formation thickness,and it is concentrated in the formation thickness conversion area,followed by the thinner area.According to the understanding of insufficient accommodation space in the geomorphic highland and the migration of granular shoal to geomorphic lowland in the late highstand of the third-order cycle,it is proposed that the large-scale shoal-controlled dolomite reservoirs are distributed along structural highs and slopes,and the reservoir-forming model with shoal,dolomitization and karstification jointly controlled by the microgeomorphy and sea-level fluctuation in the sedimentary period is established.On this basis,the paleogeomorphology in the lower Mao 2 Member is restored using well-seismic data,and the reservoir distribution is predicted.The prediction results have been verified by the latest results of exploration wells and tests,which provide an important reference for the prediction of thin dolomite reservoirs under similar geological setting.展开更多
Given that dolomite is prone to strength degradation and susceptible to water-sand ingress under physicochemical actions,this study aims to investigate these phenomena,along with the sanding mechanism in the Xiaopu Tu...Given that dolomite is prone to strength degradation and susceptible to water-sand ingress under physicochemical actions,this study aims to investigate these phenomena,along with the sanding mechanism in the Xiaopu Tunnel of the Yunnan Dianzhong Water Diversion Project,using a combined experimental and modeling approach for systematic analysis.Triaxial cyclic loading-unloading tests were first conducted on dolomite samples soaked in sulfuric acid solutions of varying concentrations,with synchronous monitoring of their mechanical responses(e.g.,peak strength,deformation modulus,porosity changes).These tests,combined with observations of macroscopic morphology and mass changes during soaking,revealed a four-stage degradation pattern of dolomite in sulfuric acid:water absorption,dynamic equilibrium,dissolution,and stabilization.Key quantitative relationships established that as sulfuric acid concentration increased(from 0%to 15%),the peak strength of dolomite decreased significantly(by 7.49%to 24.99%),while porosity markedly increased(by 45%to 130%).Further post-failure analysis(fracture surface observation)and scanning electron microscopy(SEM)micro-characterization uncovered the intrinsic mechanisms of acid-induced damage:the acid solution not only promoted macroscopic crack propagation and increased fracture surface roughness but also triggered severe structural deterioration at the microscale,including enlarged crystal spacing,dissolution of gel-like substances,formation of intra-crystalline pores,weakened interparticle cementation,and development of macropores.The extent of this deterioration was positively correlated with acid concentration.Based on the experimentally revealed chemo-mechanical coupling damage mechanism between acid and rock,this study established,for the first time,a multi-scale predictive model capable of quantitatively correlating acid concentration,microstructural deterioration,and degradation of macroscopic mechanical properties.The development of this model not only deepens the quantitative understanding of the dolomite sanding mechanism but also provides a crucial theoretical tool for assessing surrounding rock stability and predicting risks in similar water diversion tunnel engineering.Addressing the specific risks of water and H^(+) erosion in the Xiaopu Tunnel,the research findings directly informed the engineering reinforcement strategy:concrete lining is recommended as the primary load-bearing structure,supplemented by surrounding rock surface protection measures,to effectively mitigate the acid-induced damage process and enhance the long-term stability of the surrounding rock.展开更多
The 10000-m ultradeep dolomite reservoir holds significant potential as a successor field for future oil and gas exploration in China's marine craton basin.However,major challenges such as the genesis of dolomite,...The 10000-m ultradeep dolomite reservoir holds significant potential as a successor field for future oil and gas exploration in China's marine craton basin.However,major challenges such as the genesis of dolomite,the formation time of high-quality reservoirs,and the preservation mechanism of reservoirs have always limited exploration decision-making.This research systematically elaborates on the genesis and reservoir-forming mechanisms of Sinian-Cambrian dolomite,discussing the ancient marine environment where microorganisms and dolomite develop,which controls the formation of large-scale Precambrian-Cambrian dolomite.The periodic changes inMg isotopes and sedimentary cycles show that the thick-layered dolomite is the result of different dolomitization processes superimposed on a spatiotemporal scale.Lattice defects and dolomite embryos can promote dolomitization.By simulating the dissolution of typical calcite and dolomite crystal faces in different solution systems and calculating their molecular weights,the essence of heterogeneous dissolution and pore formation on typical calcite and dolomite crystal faces was revealed,and the mechanism of dolomitization was also demonstrated.The properties of calcite and dolomite(104)/(110)grain boundaries and their dissolution mechanism in carbonate solution were revealed,showing the limiting factors of the dolomitization process and the preservation mechanism of deep buried dolomite reservoirs.The in situ laser U-Pb isotope dating technique has demonstrated the timing of dolomitization and pore formation in ancient carbonate rocks.This research also proposed that dolomitization occurred during the quasi-contemporaneous or shallow-burial periods within 50Ma after deposition and pores formed during the quasi-contemporaneous to the early diagenetic periods.And it was clear that the quasi-contemporaneous dolomitization was the key period for reservoir formation.The systematic characterization of the spatial distribution of the deepest dolomite reservoirs in multiple sets of the Sinian and the Cambrian in the Chinese craton basins provides an important basis for the distribution prediction of large-scale dolomite reservoirs.It clarifies the targets for oil and gas exploration at depths over 10000 m.The research on dolomite in this study will greatly promote China's ultradeep oil and gas exploration and lead the Chinese petroleum industry into a new era of 10000-m deep oil exploration.展开更多
Disintegrated dolomite slope and tunnel disasters occur frequently due to poor water stability of disintegrated dolomite,primarily in a form of seepage failure.For engineering purposes,it is critical to determine the ...Disintegrated dolomite slope and tunnel disasters occur frequently due to poor water stability of disintegrated dolomite,primarily in a form of seepage failure.For engineering purposes,it is critical to determine the seepage properties of disintegrated dolomite within the strata.However,conventional experimental methods are time-consuming and expensive and may not be effective in investigating seepage characteristics due to the heterogeneity of disintegrated dolomite.In this study,pore network model(PNM)was established by the computerized tomography(CT)scanning technology to characterize the pores.Meanwhile,the seepage and coefficient of permeability under different inlet stress conditions based on the accurate pore model were realized by linking the commercial image processing software Avizo with the commercial multi-physics modeling package Comsol.The results show that the porosities of severely and completely disintegrated dolomites are 29.17% and 45.37%,respectively.The grade of pore development increases with disintegration grade,which facilitates seepage failure.Severely and completely disintegrated dolomites have the coefficients of permeability of 9.67×10^(-7) m/s and 1.61×10^(-6) m/s,respectively.Under conventional conditions,severely and completely disintegrated dolomites undergo seepage failure above a pressure difference of 6×10^(3) Pa and 5×10^(3) Pa,respectively.These results are consistent with both in situ water pressure tests in the borehole and laboratory tests with the constant-head method,demonstrating that CT scanning is an effective method for observing fractures and pores in disintegrated dolomite for seepage evaluation.展开更多
The Yingshan Formation of the Lower-Middle Ordovician in the Tarim Basin(NW China)was mainly deposited in a shallow platform,which was intensely bioturbated with burrows filled with both dolomites and calcites.This st...The Yingshan Formation of the Lower-Middle Ordovician in the Tarim Basin(NW China)was mainly deposited in a shallow platform,which was intensely bioturbated with burrows filled with both dolomites and calcites.This study aims to figure out the controls on the dolomitization of burrow infills and the effects on petroleum reservoir quality based on petrographic examination,fluid inclusion microthermometry,and isotopic(C-O-Sr)geochemical analyses.The differentiation of burrow-associated carbonates(dolomites and calcites)was likely controlled by the interactions of sea-level oscillations of variable orders and depositional environments.The burrow-associated dolomites(BADs)were precipitated in a relatively restricted(i.e.,lagoon)depositional environment during the lowstand of long-term sea level.In contrast,the burrow-associated calcites(BACs)were formed in a water circulation-improved lagoonal environment during the transgression of long-term sea level.Isotopic geochemical data indicate that the BADs in the Yingshan Formation were formed from slightly saline(i.e.,mesosaline to penesaline)seawater,whereas the BACs were precipitated from nearly normal seawater.In addition to the anoxic condition,the presence of marine-sourced organic matter and sulfate-reducing bacteria,and a sufficient supply of dolomitizing fluids enriched in magnesium ions(Mg^(2+))and their Mg^(2+)concentration may have played a critical role in the formation of BADs.In the more permeable and disturbed burrow sediments as a result of burrowing,penetrating fluids with higher salinities and higher Mg^(2+)concentration relative to seawater favored dolomite precipitation.The fluids with seawater-like Mg^(2+)concentration,however,would lead to calcite precipitation.The progressive dolomitization of these burrowed sediments could have propagated the dolomitizing fronts and extended into ambient limestones,leading to the development of extensive dolomites.This dolomitization process can improve the petrophysical properties(porosity and permeability)and the potential as hydrocarbon reservoirs during the emplacement of hydrocarbons from underlying source rocks of the Cambrian to Lower Ordovician.展开更多
The process of aluminothermic reduction of a mixture of calcined dolomite and calcined magnesite had been developed. The mechanism of the process was studied by SEM and EDS. The reduction process was divided into thre...The process of aluminothermic reduction of a mixture of calcined dolomite and calcined magnesite had been developed. The mechanism of the process was studied by SEM and EDS. The reduction process was divided into three stages:0≤ηt/ηf≤0.43±0.06, 0.43±0.06≤ηt/ηf≤0.9±0.02 and 0.9±0.02≤ηt/ηf<1, whereηt andηf are the reduction ratio at time t and the final reduction ratio obtained in the experiment at temperature T, respectively. The first stage included the direct reaction between calcined dolomite or calcined magnesite and Al with 12CaO·7Al2O3 and MgO·Al2O3 as products. The reaction rate depended on the chemical reaction. The CA phase was mainly produced in the second stage and the overall reaction rate was determined by both the diffusion of Ca2+ with molten Al and the chemical reaction. The CA2 phase was mainly produced in the third stage and the reaction process was controlled by the diffusion of Ca2+.展开更多
The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments w...The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments were carried out at 4 Pa. The results indicate that the reduction rate is increased with increasing temperature, content of aluminum and pellet forming pressure. The XRD patterns of pellets at different reduction stages confirm that the reduction process can be roughly classified into three stages:the formation of MgAl2O4, and Ca12Al14O33 phases;the phase transformation from MgAl2O4 and C12A7 to CaAl2O4;the formation of CaAl4O7 phase. The experimental data were divided into three parts according to the kinetic models. The apparent activation energies of the three parts were determined to be 98.2, 133.0 and 223.3 kJ/mol, respectively.展开更多
REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The we...REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism.展开更多
Hydrothermal mineral assemblages and related hydrothermally enhanced fracturing are common in the Precambrian Dengying Formation of Central Sichuan Basin. Petrographic and geochemical analyses of core samples show tha...Hydrothermal mineral assemblages and related hydrothermally enhanced fracturing are common in the Precambrian Dengying Formation of Central Sichuan Basin. Petrographic and geochemical analyses of core samples show that the hydrothermal dolomite reservoirs of Dengying Formation consist of four main types of pores in the reservoir facies. These include: 1) hydrothermal dissolution vug(or pore), 2) intercrystalline pore, 3) residual inter-breccia vug(or pore), and 4) enlarged dissolved-fracture. There are three different fabrics dolomite in hydrothermal dolomite reservoirs, namely, saddle dolomite, fine-medium dolomite and micritic dolomite. Micritic dolomite is the original lithology of host rock. Saddle dolomite with curved or irregular crystal faces was directly crystallized from hydrothermal fluids(average temperature 192°C). Fine-medium dolomites are the products of recrystallization of micritic dolomite, resulting in abnormal geochemical characteristics, such as slight depletion of δ^(18)O, significant enrichment of Mn-Fe and ^(87)Sr/^(86)Sr, and positive Eu anomaly. A model for the distribution of various hydrothermal dolomite reservoir facies is proposed here, which incorporates three fundamental geological controls: 1) extensional tectonics and tectono-hydrothermal events(i.e., the Xingkai Taphrogenesis of Late Sinian-Early Cambrian, and Emei Taphrogenesis of Late Permian), 2) hydrothermal fluid storage in clastic rocks with large thickness(e.g., Nanhua System of Chengjiang Formation and part of Doushantuo Formation), and 3) confining bed for hydrothermal fluids(such as, the shale in Qiongzhusi Formation). The supply of hydrothermal fluid is critical. Large basement-rooted faults and associated grid-like fracture system may function as the channels for upward migration of hydrothermal fluid flow. The intersection of the above-mentioned faults(including the conversion fault), especially transtensional sags above negative flower structures on wrench faults can serve as a key target for future hydrocarbon exploration.展开更多
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu...The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.展开更多
A novel mixed collector (BHOA) was prepared by mixing benzohydroxamic acid (BHA) and sodium oleate (NaOL) and applied to the flotation separation of smithsonite from dolomite. Flotation results showed that NaOL alone ...A novel mixed collector (BHOA) was prepared by mixing benzohydroxamic acid (BHA) and sodium oleate (NaOL) and applied to the flotation separation of smithsonite from dolomite. Flotation results showed that NaOL alone had good collecting performance on smithsonite and common gangue mineral dolomite but had poor selectivity. By using a BHA/NaOL mixed system with a molar ratio of 2:1, the recoveries of smithsonite and dolomite reached approximately 90% and 5%, respectively. Surface tension analysis showed that the surface activity of BHOA was a little higher than that of a single NaOL because of synergistic effects. Zeta potential and X-ray photoelectron spectroscopy measurements indicated that surfactants BHA and NaOL co-absorbed on the smithsonite surface and only NaOL was present on the dolomite surface in the presence of BHOA.展开更多
Hydrothermal Dolomite(HTD)is present in the Upper Sinian(Upper Proterozoic)Dengying Formation,east Sichuan Basin,China.The strata are comprised by primary dolomite.The HTD has various textures,including zebra dolomite...Hydrothermal Dolomite(HTD)is present in the Upper Sinian(Upper Proterozoic)Dengying Formation,east Sichuan Basin,China.The strata are comprised by primary dolomite.The HTD has various textures,including zebra dolomite,subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures.Also co-occur MVT type lead-zinc ores in the study area.Theδ13C andδ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks,while STSr/86Sr is higher.The apparent difference in carbon,oxygen and strontium isotopes,especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids.Saddle dolomite was precipitated at temperatures of 270-320℃.The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are:(1)dolomite host rock→sphalerite-galena-barite-fluorite;(2)dolomite host rock→saddle dolomite→quartz;(3)dolomite host rock→saddle dolomite→bitumen;(4)dolomite host rock→saddle dolomite→barite.The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process.The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian,fluids from diagenetic compaction and hydrocarbon generation&expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones,and hydrothermal fluids from the basement.The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata.The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores.Dissolution cavities are extensive at the top of Dengying Formation,up to about 46m below the unconformity between Sinian and Cambrian and were generated mainly during karstification.Hydrothermal alteration enhanced the reservoir property of the Dengying Formation dolomites with 3%-5%increase in porosity.No agreement has been reached why zebra dolomite occurs only in the Upper Sinian strata,which would indicate that HTD mineralization occurred during two different periods,each of them related to major extensional tectonic event.The early one related to the Xingkai taphrogenesis(Z2-C1)and the later one to the Emei taphrogenesis(D2-T2).But,all the data from saddle dolomite suggest that the predominant crystallization occurred during the latter event.展开更多
The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from...The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform.展开更多
An integrated petrographical and geochemical study of the massive dolomite of the lower Ordovician Penglaiba Formation of the Tarim Basin,outcropping at Yonganba recognized three dolomite types:very finely to finely c...An integrated petrographical and geochemical study of the massive dolomite of the lower Ordovician Penglaiba Formation of the Tarim Basin,outcropping at Yonganba recognized three dolomite types:very finely to finely crystalline nonplanar-a to planar-s dolomite(D1);medium crystalline planar-s to planar-e dolomite(D2);and coarse crystalline nonplanar-a dolomite(D3).All have been affected by burial.D1 and D2 dolomites developed initially before or during shallow burial and later recrystallized,whereas D3 dolomite replaced the initial limestone entirely during burial.All three dolomites have similar geochemical features.The D2 dolomite tends to have more inter-crystalline pores(inherited from primary pores)and higher porosity due to its outstanding compaction resistance during shallow burial;whereas D3 dolomite does not retain appreciable primary pores due to strong cementation and pressure dissolution before dolomitization.This study provides a useful model for understanding the origin and porosity development of burial dolomite,in particular Paleozoic dolomite.展开更多
The effect of dolomite with different particle size fractions on hematite flotation was studied using sodium oleate as collector at p H of about 9. The effect mechanism of dolomite on hematite flotation was investigat...The effect of dolomite with different particle size fractions on hematite flotation was studied using sodium oleate as collector at p H of about 9. The effect mechanism of dolomite on hematite flotation was investigated by means of solution chemistry, ultraviolet spectrophotometry(UV), inductively coupled plasma atomic emission spectrometry(ICP-AES) and X-ray photoelectron spectroscopy(XPS). It is observed that dolomite with different size fractions has depressing effect on hematite flotation using sodium oleate as collector, and dolomite could be the "mineral depressant" of hematite using sodium oleate as collector. The reasons for that are concerned with sodium oleate consumption and the adsorption onto hematite of dissolved species of dolomite.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.42372162,U22B6004)the Scientific Research and Technology Development Program of CNPC(Nos.2021DJ0102,2021DJ1808)。
文摘Lacustrine dolomite is paid increasing attention to uncover the diagenetic water condition of paleo-lake and“dolomite problem”.Here,a dolomite nodule from the Qingshankou Formation in the Songliao Basin was analyzed to explore the salinity,alkalinity,and redox conditions of the diagenetic water.Multiple proxies,including bulk boron(B)content,B isotope composition(δ^(11)B_(bul)),boron to gallium weight ratio(B/Ga)and carbonate oxygen isotope composition(δ^(18)O_(carb)),were used to determine the diagenetic water to be brackish-fresh.Through numerical simulation,we calculated the B contents,δ^(11)B values and B/Ga in detritus(e.g.,clay,quartz and feldspar)and dolomite as two endmembers,confirming the intense interference of clay minerals onδ^(11)B_(bul).By using the fittedδ^(11)B of dolomite endmember(20.6‰),we calculated the p H value of the diagenetic water to be 8.2.The negativeδ^(11)B value of detritus endmember(-12.9‰)might be related to the terrestrial weathering.The indicative nature of strontium to barium weight ratio(Sr/Ba)was discussed to deny its applicability as a proxy of salinity in carbonate system.High Sr/Ba ratio in this dolomite nodule indicates a sulfate-poor water condition,consistent with the iron-manganese(Fe-Mn)reduction environments reflected by the Mn/Fe molar ratio.The positive carbonate carbon isotopes(δ^(13)C_(carb),4.5‰-9.4‰)indicate that methanogenesis dominated the formation of dolomite,coinciding with the weak sulfate reduction reaction in sulfate-poor water.The growth of dolomite nodule might be related to the microbial activities of methanogen and iron reducing bacteria,which had not only maintained the salinity,p H,and redox status of the diagenetic water,but also led to a ferricmethane transition zone(FMTZ).This research depicts a scenario about the diagenetic water environment of lacustrine dolomite formed in brackish-fresh water,which is different from that occurred in sulfate-rich condition.
基金Project(BGRIMM-KJSKL-2024-07) supported by the Open Foundation of State Key Laboratory of Mineral Processing,ChinaProjects(52374259,52174239) supported by the National Natural Science Foundation of China。
文摘Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.
基金Project(IMRI23005)supported by Ordos Science and Technology Bureau,ChinaProjects(52174096,52304110)supported by the National Natural Science Foundation of China。
文摘To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.
基金financially supported by the Science Foundation of China University of Petroleum,Beijing(Nos.2462018YJRC030 and 2462020YXZZ020)the China Sponsorship Council(No.202306440071)。
文摘The widespread dolomite of the Sinian Dengying Formation in the Sichuan Basin(China)serves as one of the most important oil and gas reservoir rocks of the basin.Well WT1,as an exploration well,is recently drilled in the Kaijiang County,northeastern Sichuan Basin(SW China),and it drills through the Dengying Formation dolomite at the depth interval of 7500–7580 m.In this study,samples are systematically collected from the cores of that interval,followed by new analyses of carbon-oxygen isotope,major elements,trace elements,rare earth elements(REEs)and EP-MA.The Dengying Formation dolomites of Well WT1 haveδ13C values of 0.37‰to 2.91‰andδ18O values of-5.72‰to-2.73‰,indicating that the dolomitization fluid is derived from contemporary seawater in the near-surface environment,rather than the burial environment.Based on the REE patterns of EPMA-based in-situ data,we recognized the seawater-sourced components,the mixedsourced components and the terrigenous-sourced components,indicating the marine origin of the dolomite with detrital contamination and diagenetic alteration.Moreover,high Al,Th,and Zr contents indicate significant detrital contamination derived from clay and quartz minerals,and high Sr/Ba and Sr/Cu ratios imply a relatively dry depositional environment with extremely high seawater salinity,intensive evaporation,and strong influences of terrigenous sediment.
基金Project(52004333)supported by the National Science Foundation of ChinaProject(2021CB1002)supported by Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources,China。
文摘The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer(AAAMPS)was first used as the depressant in fluorite flotation,and its effect on the flotation separation of fluorite and dolomite in sodium oleate(NaOL)system was investigated.The depression mechanism was analyzed by contact angle measurement,zeta potential test,FTIR and XPS analyses.The micro-flotation test results showed that dolomite can be inhibited in fluorite flotation system in the addition of 2 mg/L AA-AMPS and 20 mg/L NaOL at pH 10.The CaF_(2) grade increased from 49.85%in the artificial mixed mineral to 89.60%in the fluorite concentrate.The depression mechanism indicated that AA-AMPS could adsorb strongly on dolomite surface by the chelation with Ca and Mg active sites.Moreover,the further adsorption of NaOL on dolomite surface was prevented by the AA-AMPS adsorption,but that on fluorite surface was little affected,thereby increasing the difference in the hydrophobicity and floatability of the two minerals.
基金Supported by the National Natural Science Foundation of China(42172166)National Natural Science Foundation and CNPC Joint Fund Project(U23B20154)CNPC-Southwest Petroleum University Science and Technology Cooperation Project(2020CX010000).
文摘This paper discusses the characteristics and formation mechanism of thin dolomite reservoirs in the lower submember of the second member of the Permian Maokou Formation(lower Mao 2 Member)in the Wusheng-Tongnan area of the Sichuan Basin,SW China,through comprehensive analysis of geological,geophysical and geochemical data.The reservoir rocks of the lower Mao 2 Member are dominated by porphyritic vuggy dolomite and calcareous dolomite or dolomitic limestone,which have typical karst characteristics of early diagenetic stage.The dolomites at the edge of the karst system and in the fillings have dissolved estuaries,and the dolomite breccia has micrite envelope and rim cement at the edge,indicating that dolomitization is earlier than the early diagenetic karstification.The shoal facies laminated dolomite is primarily formed by the seepage reflux dolomitization of moderate-salinity seawater.The key factors of reservoir formation are the bioclastic shoal deposition superimposed with seepgae reflux dolomitization and the karstification of early diagenetic stage,which are locally reformed by fractures and hydrothermal processes.The development of dolomite vuggy reservoir is closely related to the upward-shallowing sequence,and mainly occurs in the late highstand of the fourth-order cycle.Moreover,the size of dolomite is closely related to formation thickness,and it is concentrated in the formation thickness conversion area,followed by the thinner area.According to the understanding of insufficient accommodation space in the geomorphic highland and the migration of granular shoal to geomorphic lowland in the late highstand of the third-order cycle,it is proposed that the large-scale shoal-controlled dolomite reservoirs are distributed along structural highs and slopes,and the reservoir-forming model with shoal,dolomitization and karstification jointly controlled by the microgeomorphy and sea-level fluctuation in the sedimentary period is established.On this basis,the paleogeomorphology in the lower Mao 2 Member is restored using well-seismic data,and the reservoir distribution is predicted.The prediction results have been verified by the latest results of exploration wells and tests,which provide an important reference for the prediction of thin dolomite reservoirs under similar geological setting.
基金funded by Ordos Science and Technology Plan (Grant No. TD20240003)the National Natural Science Foundation of China (52174096, 52304110)+1 种基金Ordos Science and Technology Bureau (Grant No. IMRI23005)Ordos Science and Technology Plan (Grant No. YF20240021)
文摘Given that dolomite is prone to strength degradation and susceptible to water-sand ingress under physicochemical actions,this study aims to investigate these phenomena,along with the sanding mechanism in the Xiaopu Tunnel of the Yunnan Dianzhong Water Diversion Project,using a combined experimental and modeling approach for systematic analysis.Triaxial cyclic loading-unloading tests were first conducted on dolomite samples soaked in sulfuric acid solutions of varying concentrations,with synchronous monitoring of their mechanical responses(e.g.,peak strength,deformation modulus,porosity changes).These tests,combined with observations of macroscopic morphology and mass changes during soaking,revealed a four-stage degradation pattern of dolomite in sulfuric acid:water absorption,dynamic equilibrium,dissolution,and stabilization.Key quantitative relationships established that as sulfuric acid concentration increased(from 0%to 15%),the peak strength of dolomite decreased significantly(by 7.49%to 24.99%),while porosity markedly increased(by 45%to 130%).Further post-failure analysis(fracture surface observation)and scanning electron microscopy(SEM)micro-characterization uncovered the intrinsic mechanisms of acid-induced damage:the acid solution not only promoted macroscopic crack propagation and increased fracture surface roughness but also triggered severe structural deterioration at the microscale,including enlarged crystal spacing,dissolution of gel-like substances,formation of intra-crystalline pores,weakened interparticle cementation,and development of macropores.The extent of this deterioration was positively correlated with acid concentration.Based on the experimentally revealed chemo-mechanical coupling damage mechanism between acid and rock,this study established,for the first time,a multi-scale predictive model capable of quantitatively correlating acid concentration,microstructural deterioration,and degradation of macroscopic mechanical properties.The development of this model not only deepens the quantitative understanding of the dolomite sanding mechanism but also provides a crucial theoretical tool for assessing surrounding rock stability and predicting risks in similar water diversion tunnel engineering.Addressing the specific risks of water and H^(+) erosion in the Xiaopu Tunnel,the research findings directly informed the engineering reinforcement strategy:concrete lining is recommended as the primary load-bearing structure,supplemented by surrounding rock surface protection measures,to effectively mitigate the acid-induced damage process and enhance the long-term stability of the surrounding rock.
基金National Natural Science Foundation of China,Grant/Award Number:42230812。
文摘The 10000-m ultradeep dolomite reservoir holds significant potential as a successor field for future oil and gas exploration in China's marine craton basin.However,major challenges such as the genesis of dolomite,the formation time of high-quality reservoirs,and the preservation mechanism of reservoirs have always limited exploration decision-making.This research systematically elaborates on the genesis and reservoir-forming mechanisms of Sinian-Cambrian dolomite,discussing the ancient marine environment where microorganisms and dolomite develop,which controls the formation of large-scale Precambrian-Cambrian dolomite.The periodic changes inMg isotopes and sedimentary cycles show that the thick-layered dolomite is the result of different dolomitization processes superimposed on a spatiotemporal scale.Lattice defects and dolomite embryos can promote dolomitization.By simulating the dissolution of typical calcite and dolomite crystal faces in different solution systems and calculating their molecular weights,the essence of heterogeneous dissolution and pore formation on typical calcite and dolomite crystal faces was revealed,and the mechanism of dolomitization was also demonstrated.The properties of calcite and dolomite(104)/(110)grain boundaries and their dissolution mechanism in carbonate solution were revealed,showing the limiting factors of the dolomitization process and the preservation mechanism of deep buried dolomite reservoirs.The in situ laser U-Pb isotope dating technique has demonstrated the timing of dolomitization and pore formation in ancient carbonate rocks.This research also proposed that dolomitization occurred during the quasi-contemporaneous or shallow-burial periods within 50Ma after deposition and pores formed during the quasi-contemporaneous to the early diagenetic periods.And it was clear that the quasi-contemporaneous dolomitization was the key period for reservoir formation.The systematic characterization of the spatial distribution of the deepest dolomite reservoirs in multiple sets of the Sinian and the Cambrian in the Chinese craton basins provides an important basis for the distribution prediction of large-scale dolomite reservoirs.It clarifies the targets for oil and gas exploration at depths over 10000 m.The research on dolomite in this study will greatly promote China's ultradeep oil and gas exploration and lead the Chinese petroleum industry into a new era of 10000-m deep oil exploration.
基金supported by the National Natural Science Foundation of China(Grant No.42162026)the Basic Research Program in Yunnan Province,China(Grant No.202401AT070328)the Young Talents Project of“Xingdian Talent Support Program"in Yunnan Province,China(Grant No.YNWR-QNBJ-2020-019).
文摘Disintegrated dolomite slope and tunnel disasters occur frequently due to poor water stability of disintegrated dolomite,primarily in a form of seepage failure.For engineering purposes,it is critical to determine the seepage properties of disintegrated dolomite within the strata.However,conventional experimental methods are time-consuming and expensive and may not be effective in investigating seepage characteristics due to the heterogeneity of disintegrated dolomite.In this study,pore network model(PNM)was established by the computerized tomography(CT)scanning technology to characterize the pores.Meanwhile,the seepage and coefficient of permeability under different inlet stress conditions based on the accurate pore model were realized by linking the commercial image processing software Avizo with the commercial multi-physics modeling package Comsol.The results show that the porosities of severely and completely disintegrated dolomites are 29.17% and 45.37%,respectively.The grade of pore development increases with disintegration grade,which facilitates seepage failure.Severely and completely disintegrated dolomites have the coefficients of permeability of 9.67×10^(-7) m/s and 1.61×10^(-6) m/s,respectively.Under conventional conditions,severely and completely disintegrated dolomites undergo seepage failure above a pressure difference of 6×10^(3) Pa and 5×10^(3) Pa,respectively.These results are consistent with both in situ water pressure tests in the borehole and laboratory tests with the constant-head method,demonstrating that CT scanning is an effective method for observing fractures and pores in disintegrated dolomite for seepage evaluation.
基金supported by Guizhou Provincial Science and Technology Projects(No.ZK[2021]ordinary 199)the National Natural Science Foundation of China(Nos.42262019,92062221)the National Key R&D Program of China(No.2017YFC0603103)。
文摘The Yingshan Formation of the Lower-Middle Ordovician in the Tarim Basin(NW China)was mainly deposited in a shallow platform,which was intensely bioturbated with burrows filled with both dolomites and calcites.This study aims to figure out the controls on the dolomitization of burrow infills and the effects on petroleum reservoir quality based on petrographic examination,fluid inclusion microthermometry,and isotopic(C-O-Sr)geochemical analyses.The differentiation of burrow-associated carbonates(dolomites and calcites)was likely controlled by the interactions of sea-level oscillations of variable orders and depositional environments.The burrow-associated dolomites(BADs)were precipitated in a relatively restricted(i.e.,lagoon)depositional environment during the lowstand of long-term sea level.In contrast,the burrow-associated calcites(BACs)were formed in a water circulation-improved lagoonal environment during the transgression of long-term sea level.Isotopic geochemical data indicate that the BADs in the Yingshan Formation were formed from slightly saline(i.e.,mesosaline to penesaline)seawater,whereas the BACs were precipitated from nearly normal seawater.In addition to the anoxic condition,the presence of marine-sourced organic matter and sulfate-reducing bacteria,and a sufficient supply of dolomitizing fluids enriched in magnesium ions(Mg^(2+))and their Mg^(2+)concentration may have played a critical role in the formation of BADs.In the more permeable and disturbed burrow sediments as a result of burrowing,penetrating fluids with higher salinities and higher Mg^(2+)concentration relative to seawater favored dolomite precipitation.The fluids with seawater-like Mg^(2+)concentration,however,would lead to calcite precipitation.The progressive dolomitization of these burrowed sediments could have propagated the dolomitizing fronts and extended into ambient limestones,leading to the development of extensive dolomites.This dolomitization process can improve the petrophysical properties(porosity and permeability)and the potential as hydrocarbon reservoirs during the emplacement of hydrocarbons from underlying source rocks of the Cambrian to Lower Ordovician.
基金Project(MYF2011-34)supported by High-tech R&D Projects of Liaoning Province Magnesia Materials Industry,ChinaProject(2011221002)supported by Industrial Research Projects of Liaoning Province,ChinaProject(N100302009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The process of aluminothermic reduction of a mixture of calcined dolomite and calcined magnesite had been developed. The mechanism of the process was studied by SEM and EDS. The reduction process was divided into three stages:0≤ηt/ηf≤0.43±0.06, 0.43±0.06≤ηt/ηf≤0.9±0.02 and 0.9±0.02≤ηt/ηf<1, whereηt andηf are the reduction ratio at time t and the final reduction ratio obtained in the experiment at temperature T, respectively. The first stage included the direct reaction between calcined dolomite or calcined magnesite and Al with 12CaO·7Al2O3 and MgO·Al2O3 as products. The reaction rate depended on the chemical reaction. The CA phase was mainly produced in the second stage and the overall reaction rate was determined by both the diffusion of Ca2+ with molten Al and the chemical reaction. The CA2 phase was mainly produced in the third stage and the reaction process was controlled by the diffusion of Ca2+.
基金Project(MYF2011-34)supported by High-tech R&D Plan of Liaoning Province,ChinaProject(2011221002)supported by Industrial Research Projects of Liaoning Province,ChinaProject(N100302009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments were carried out at 4 Pa. The results indicate that the reduction rate is increased with increasing temperature, content of aluminum and pellet forming pressure. The XRD patterns of pellets at different reduction stages confirm that the reduction process can be roughly classified into three stages:the formation of MgAl2O4, and Ca12Al14O33 phases;the phase transformation from MgAl2O4 and C12A7 to CaAl2O4;the formation of CaAl4O7 phase. The experimental data were divided into three parts according to the kinetic models. The apparent activation energies of the three parts were determined to be 98.2, 133.0 and 223.3 kJ/mol, respectively.
基金supported by the National Basic Research Program of China(973 Program) (2009CB421006)the State Key Laboratory of Geological Processes and Mineral Resources (GPMR200843)
文摘REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism.
基金funded by the National Science and Technology Major Project(grant No.2016ZX05052)the National Natural Science Foundation of China(grant No.41072102)
文摘Hydrothermal mineral assemblages and related hydrothermally enhanced fracturing are common in the Precambrian Dengying Formation of Central Sichuan Basin. Petrographic and geochemical analyses of core samples show that the hydrothermal dolomite reservoirs of Dengying Formation consist of four main types of pores in the reservoir facies. These include: 1) hydrothermal dissolution vug(or pore), 2) intercrystalline pore, 3) residual inter-breccia vug(or pore), and 4) enlarged dissolved-fracture. There are three different fabrics dolomite in hydrothermal dolomite reservoirs, namely, saddle dolomite, fine-medium dolomite and micritic dolomite. Micritic dolomite is the original lithology of host rock. Saddle dolomite with curved or irregular crystal faces was directly crystallized from hydrothermal fluids(average temperature 192°C). Fine-medium dolomites are the products of recrystallization of micritic dolomite, resulting in abnormal geochemical characteristics, such as slight depletion of δ^(18)O, significant enrichment of Mn-Fe and ^(87)Sr/^(86)Sr, and positive Eu anomaly. A model for the distribution of various hydrothermal dolomite reservoir facies is proposed here, which incorporates three fundamental geological controls: 1) extensional tectonics and tectono-hydrothermal events(i.e., the Xingkai Taphrogenesis of Late Sinian-Early Cambrian, and Emei Taphrogenesis of Late Permian), 2) hydrothermal fluid storage in clastic rocks with large thickness(e.g., Nanhua System of Chengjiang Formation and part of Doushantuo Formation), and 3) confining bed for hydrothermal fluids(such as, the shale in Qiongzhusi Formation). The supply of hydrothermal fluid is critical. Large basement-rooted faults and associated grid-like fracture system may function as the channels for upward migration of hydrothermal fluid flow. The intersection of the above-mentioned faults(including the conversion fault), especially transtensional sags above negative flower structures on wrench faults can serve as a key target for future hydrocarbon exploration.
基金supported by the Youth Science Foundation of China(No.52004333)the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.
基金Project(51704329) supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901) supported by the National Key Scientific Research Project of China
文摘A novel mixed collector (BHOA) was prepared by mixing benzohydroxamic acid (BHA) and sodium oleate (NaOL) and applied to the flotation separation of smithsonite from dolomite. Flotation results showed that NaOL alone had good collecting performance on smithsonite and common gangue mineral dolomite but had poor selectivity. By using a BHA/NaOL mixed system with a molar ratio of 2:1, the recoveries of smithsonite and dolomite reached approximately 90% and 5%, respectively. Surface tension analysis showed that the surface activity of BHOA was a little higher than that of a single NaOL because of synergistic effects. Zeta potential and X-ray photoelectron spectroscopy measurements indicated that surfactants BHA and NaOL co-absorbed on the smithsonite surface and only NaOL was present on the dolomite surface in the presence of BHOA.
基金funded by National Basic Research Program of China(Grant No.2012CB214805)
文摘Hydrothermal Dolomite(HTD)is present in the Upper Sinian(Upper Proterozoic)Dengying Formation,east Sichuan Basin,China.The strata are comprised by primary dolomite.The HTD has various textures,including zebra dolomite,subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures.Also co-occur MVT type lead-zinc ores in the study area.Theδ13C andδ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks,while STSr/86Sr is higher.The apparent difference in carbon,oxygen and strontium isotopes,especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids.Saddle dolomite was precipitated at temperatures of 270-320℃.The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are:(1)dolomite host rock→sphalerite-galena-barite-fluorite;(2)dolomite host rock→saddle dolomite→quartz;(3)dolomite host rock→saddle dolomite→bitumen;(4)dolomite host rock→saddle dolomite→barite.The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process.The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian,fluids from diagenetic compaction and hydrocarbon generation&expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones,and hydrothermal fluids from the basement.The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata.The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores.Dissolution cavities are extensive at the top of Dengying Formation,up to about 46m below the unconformity between Sinian and Cambrian and were generated mainly during karstification.Hydrothermal alteration enhanced the reservoir property of the Dengying Formation dolomites with 3%-5%increase in porosity.No agreement has been reached why zebra dolomite occurs only in the Upper Sinian strata,which would indicate that HTD mineralization occurred during two different periods,each of them related to major extensional tectonic event.The early one related to the Xingkai taphrogenesis(Z2-C1)and the later one to the Emei taphrogenesis(D2-T2).But,all the data from saddle dolomite suggest that the predominant crystallization occurred during the latter event.
文摘The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform.
基金supported by the National Science and Technology Major Projects of China(Grant No.2016ZX05004002)PetroChina Science and Technology Project(Grant No.2019B-0406)the China Scholarship Council(No.201908080005)。
文摘An integrated petrographical and geochemical study of the massive dolomite of the lower Ordovician Penglaiba Formation of the Tarim Basin,outcropping at Yonganba recognized three dolomite types:very finely to finely crystalline nonplanar-a to planar-s dolomite(D1);medium crystalline planar-s to planar-e dolomite(D2);and coarse crystalline nonplanar-a dolomite(D3).All have been affected by burial.D1 and D2 dolomites developed initially before or during shallow burial and later recrystallized,whereas D3 dolomite replaced the initial limestone entirely during burial.All three dolomites have similar geochemical features.The D2 dolomite tends to have more inter-crystalline pores(inherited from primary pores)and higher porosity due to its outstanding compaction resistance during shallow burial;whereas D3 dolomite does not retain appreciable primary pores due to strong cementation and pressure dissolution before dolomitization.This study provides a useful model for understanding the origin and porosity development of burial dolomite,in particular Paleozoic dolomite.
基金Project(51374079)supported by the National Natural Science Foundation of ChinaProject(KKSY201521031)supported by Talent Cultivation Foundation of Kunming University of Science and Technology,ChinaProject(2015Y067)supported by Foundation of Yunnan Educational Committee,China
文摘The effect of dolomite with different particle size fractions on hematite flotation was studied using sodium oleate as collector at p H of about 9. The effect mechanism of dolomite on hematite flotation was investigated by means of solution chemistry, ultraviolet spectrophotometry(UV), inductively coupled plasma atomic emission spectrometry(ICP-AES) and X-ray photoelectron spectroscopy(XPS). It is observed that dolomite with different size fractions has depressing effect on hematite flotation using sodium oleate as collector, and dolomite could be the "mineral depressant" of hematite using sodium oleate as collector. The reasons for that are concerned with sodium oleate consumption and the adsorption onto hematite of dissolved species of dolomite.