A document layout can be more informative than merely a document’s visual and structural appearance.Thus,document layout analysis(DLA)is considered a necessary prerequisite for advanced processing and detailed docume...A document layout can be more informative than merely a document’s visual and structural appearance.Thus,document layout analysis(DLA)is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives.This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis(SDLA)by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts.The proposed SDLA approach enables the derivation of implicit information and semantic characteristics,which can be effectively utilized in dozens of practical applications for various purposes,in a way bridging the semantic gap and providingmore understandable high-level document image analysis and more invariant characterization via absolute and relative labeling.This approach is validated and evaluated on a large dataset ofArabic handwrittenmanuscripts comprising complex layouts.The experimental work shows promising results in terms of accurate and effective semantic characteristic-based clustering and retrieval of handwritten manuscripts.It also indicates the expected efficacy of using the capabilities of the proposed approach in automating and facilitating many functional,reallife tasks such as effort estimation and pricing of transcription or typing of such complex manuscripts.展开更多
In this paper, a visual similarity based document layout analysis (DLA) scheme is proposed, which by using clustering strategy can adaptively deal with documents in different languages, with different layout structu...In this paper, a visual similarity based document layout analysis (DLA) scheme is proposed, which by using clustering strategy can adaptively deal with documents in different languages, with different layout structures and skew angles. Aiming at a robust and adaptive DLA approach, the authors first manage to find a set of representative filters and statistics to characterize typical texture patterns in document images, which is through a visual similarity testing process. Texture features are then extracted from these filters and passed into a dynamic clustering procedure, which is called visual similarity clustering. Finally, text contents are located from the clustered results. Benefit from this scheme, the algorithm demonstrates strong robustness and adaptability in a wide variety of documents, which previous traditional DLA approaches do not possess.展开更多
基金This research was supported and funded by KAU Scientific Endowment,King Abdulaziz University,Jeddah,Saudi Arabia.
文摘A document layout can be more informative than merely a document’s visual and structural appearance.Thus,document layout analysis(DLA)is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives.This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis(SDLA)by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts.The proposed SDLA approach enables the derivation of implicit information and semantic characteristics,which can be effectively utilized in dozens of practical applications for various purposes,in a way bridging the semantic gap and providingmore understandable high-level document image analysis and more invariant characterization via absolute and relative labeling.This approach is validated and evaluated on a large dataset ofArabic handwrittenmanuscripts comprising complex layouts.The experimental work shows promising results in terms of accurate and effective semantic characteristic-based clustering and retrieval of handwritten manuscripts.It also indicates the expected efficacy of using the capabilities of the proposed approach in automating and facilitating many functional,reallife tasks such as effort estimation and pricing of transcription or typing of such complex manuscripts.
基金This work is supported by the National Natural Science Foundation of China under Grant No. 60472002.
文摘In this paper, a visual similarity based document layout analysis (DLA) scheme is proposed, which by using clustering strategy can adaptively deal with documents in different languages, with different layout structures and skew angles. Aiming at a robust and adaptive DLA approach, the authors first manage to find a set of representative filters and statistics to characterize typical texture patterns in document images, which is through a visual similarity testing process. Texture features are then extracted from these filters and passed into a dynamic clustering procedure, which is called visual similarity clustering. Finally, text contents are located from the clustered results. Benefit from this scheme, the algorithm demonstrates strong robustness and adaptability in a wide variety of documents, which previous traditional DLA approaches do not possess.