Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and ...Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.展开更多
Background:In this present study,we have screened major phytoconstituents of Nilavembu Kudineer against critical COVID-19 target proteins that cause severe pneumonia globally.In addition,a human receptor protein that ...Background:In this present study,we have screened major phytoconstituents of Nilavembu Kudineer against critical COVID-19 target proteins that cause severe pneumonia globally.In addition,a human receptor protein that facilitates viral entry into the host cell was also targeted.Methods:Phytoconstituents derived from Nilavembu Kudineer formulation were docked against 12 major proteins,which help viral entry,viral proliferation,and a human receptor facilitate the viral entry into the host cells.The major metabolites of Nilavembu Kudineer were retrieved based on literature from the PubChem database.The docked complex was subjected to MD simulation studies to verify its binding mode and the stability of the interactions.The binding energy analysis was performed to estimate the binding affinity between the compounds and their respective receptors using MM/GBSA.Results:Docking studies have shown that three major plants in the polyherbal formulation,Andrographis paniculata,Mollugo cerviana,and Zingiber officinale,have 14 potential compounds that have better binding affinity against COVID-19 proteins and their host receptor protein.MD studies and binding energy calculations also confirmed that these compounds possess better stability and strong binding energy with these proteins.Conclusion:In silico analyses suggest that phytoconstituents from Nilavembu Kudineer possess promising multi-target antiviral activity against COVID-19.These findings provide a rationale for further experimental studies to validate their therapeutic potential for the treatment of COVID-19.展开更多
Pimpinella anisum,commonly known as anise,is generally used in both folk medicine and the culinary world.In traditional medicine,it is valued for its digestive,respiratory,and antispasmodic properties.This study aims ...Pimpinella anisum,commonly known as anise,is generally used in both folk medicine and the culinary world.In traditional medicine,it is valued for its digestive,respiratory,and antispasmodic properties.This study aims to examine the volatile compounds and antibacterial effect of P.anisum essential oil(PAEO)as well as for the first time its genotoxicity employing both in vitro and computational approaches.Gas chromatography-mass spectrometry(GC-MS)analysis identified anethole as the principal compound,which comprises 92.47%of PAEO.PAEO was tested for its potential antibacterial properties against Bacillus subtilis ATCC 6633,Listeria innocua ATCC 33090,Staphylococcus aureus ATCC 29213,Klebsiella aerogenes ATCC 13048,and a clinical strain of Salmonella enterica serotype Typhi.PAEO displayed noteworthy antibacterial action toward all tested bacteria,especially Staphylococcus aureus,with an inhibition zone of 21.43±0.87 mm,as determined by the disc-diffusion test.Varied between 0.0625%and 2%v/v,while the MBC values ranged from 0.125%to 8%v/v,reflecting the strength of the tested EO.The MBC/MIC ratios indicated the bactericidal nature of PAEO.The results of molecular docking revealed strong binding interactions between key PAEO molecules and microbial target proteins.ADMET(Absorption,Distribution,Metabolism,Excretion,and Toxicity)analysis confirmed favorable pharmacokinetic properties,indicating its potential as a safe therapeutic agent.Additionally,genotoxicity was assessed using the comet assay,which demonstrated minimal genotoxic risk,affirming the oil’s safety.These results highlight the promising antimicrobial properties of PAEO and its possible use as an active agent in the pharmacy,food,and cosmetic sectors.展开更多
To elucidate the mechanisms underlying the therapeutic effects of the herbal medicine pair Smilax Glabra and Semen Coicis in treating gout and hyperuricemia,a comprehensive analysis was conducted using network pharmac...To elucidate the mechanisms underlying the therapeutic effects of the herbal medicine pair Smilax Glabra and Semen Coicis in treating gout and hyperuricemia,a comprehensive analysis was conducted using network pharmacology and molecular docking methods.Disease-associated targets for gout and hyperuricemia were identified from the GeneCards,OMIM,Disgenet,and TTD databases,while the key active components and their corresponding targets for Smilax Glabra and Semen Coicis were obtained from the TCSMP database.The intersection of these targets enabled the construction of a protein-protein interaction(PPI)network,which was subsequently visualized and analyzed.Core targets were further subjected to Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses to elucidate the biological processes and pathways involved.Molecular docking was then employed to validate the reliability of the interactions between the active components and the identified targets.The analysis revealed that Smilax Glabra and Semen Coicis contained 15 bioactive components that interacted with 393 potential targets,while gout and hyperuricemia were associated with 660 targets in total.The primary active compounds implicated in treating these conditions included diosgenin,quercetin,and naringenin,which were found to interact with crucial hub targets such as BCL2,CASP3,and MAPK3.These interactions suggested that the herbal medicine pair modulated several biological processes,including gland development and the regulation of body fluid levels,through pathways involving membrane rafts,membrane microdomains,and nuclear receptor activities.Enrichment analyses highlighted their involvement in multiple signaling pathways,such as EGFR tyrosine kinase inhibitor resistance,phospholipase D signaling,and platelet activation.Molecular docking confirmed the strong binding affinities between the hub genes and the major active components,supporting their potential role in therapeutic efficacy.This study demonstrated that Smilax Glabra and Semen Coicis might offer a promising therapeutic strategy for gout and hyperuricemia by targeting multiple molecular components,biological functions,and pathways.The findings underscored the unique potential of traditional Chinese medicine(TCM)in managing complex diseases by leveraging synergistic effects across diverse biological mechanisms.展开更多
Bio-inspired magnetic helical microrobots have great potential for biomedical and micromanipulation applications. Precise interaction with objects in liquid environments is an important prerequisite and challenge for ...Bio-inspired magnetic helical microrobots have great potential for biomedical and micromanipulation applications. Precise interaction with objects in liquid environments is an important prerequisite and challenge for helical microrobots to perform various tasks. In this study, an automatic control method is proposed to realize the axial docking of helical microrobots with arbitrarily placed cylindrical objects in liquid environments. The docking process is divided into ascent, approach, alignment, and insertion stages. First, a 3D docking path is planned according to the positions and orientations of the microrobot and the target object. Second, a steering-based 3D path-following controller guides the helical microrobot to rise away from the container bottom and approach the target along the path. Third, based on path design with gravity compensation and steering output limits, alignment of position and orientation can be accomplished simultaneously. Finally, the helical microrobot completes the docking under the rotating magnetic field along the target orientation. Experiments verified the automatic docking of the helical microrobot with static targets, including connecting with micro-shafts and inserting into micro-tubes. The object grasping of a reconfigurable helical microrobot aided by 3D automatic docking was also demonstrated. This method enables precise docking of helical microrobots with objects, which might be used for capture and sampling, in vivo navigation control, and functional assembly of microrobots.展开更多
Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacol...Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacological potential of bioactive compounds derived from Pistacia integerrima in inhibiting 5-lipoxygenase(5-LOX),a key enzyme implicated in inflammation and cancer progression.The current study aimed to evaluate the lipoxygenase inhibitory activity of bioactive compounds from Pistacia integerrima and assess their potential for therapeutic development in the context of inflammation and cancer treatment.Methods:Three major compounds-spinacetin(1),patuletin(2),and pistagremic acid(3)-were isolated from Pistacia integerrima and analyzed for their lipoxygenase inhibitory activity.Biochemical assays and molecular docking studies were performed to assess their effectiveness in inhibiting 5-LOX.Results:All three compounds demonstrated significant inhibition of lipoxygenase activity.Spinacetin(1)and patuletin(2)exhibited the most potent inhibitory effects,with IC_(50)values of 40.34μM and 45.04μM,respectively.Molecular docking studies revealed that patuletin(2)had the highest binding affinity(−7.717 kcal/mol)against 5-LOX,followed by spinacetin(1)with a binding affinity of−6.074 kcal/mol.In-depth in silico analysis highlighted the drug-likeness of spinacetin(1)and its favorable toxicological profile,suggesting its suitability for therapeutic development.Conclusion:The study demonstrates that compounds from Pistacia integerrima,particularly spinacetin and patuletin,have significant lipoxygenase inhibitory activity,with spinacetin showing promise as a lead candidate for lipoxygenase-targeted therapies.The findings reinforce the therapeutic relevance of Pistacia integerrima and suggest that its bioactive compounds may serve as safer,plant-based alternatives to conventional anti-inflammatory and anticancer treatments.展开更多
BACKGROUND Camellia luteoflora is a unique variety of Camellia in China which is only distributes in Chishui City,Guizhou Province and Luzhou City,Sichuan Province.Its dried leaves are used by local residents as tea t...BACKGROUND Camellia luteoflora is a unique variety of Camellia in China which is only distributes in Chishui City,Guizhou Province and Luzhou City,Sichuan Province.Its dried leaves are used by local residents as tea to drink with light yellow and special aroma for health care.It has high potential economic medicinal value.Colon adenocarcinoma(COAD)is the third most frequent malignancy and its incidence and mortality is increasing.However,the current common treatments for COAD bring great side effects.In recent years,natural products and their various de-rivatives have shown significant potential to supplement conventional therapies and to reduce associated toxicity while improving efficacy.In order to overcome the limitations of traditional treatment methods,the global demand and development of natural anti-COAD drugs were increasingly hindered.AIM To investigate the potential targets and mechanisms of Camellia luteoflora anti-COAD.METHODS Nuclear magnetic resonance and mass spectrometry was used to identified the compounds of Camellia luteoflora.Network pharmacology analysis and survival analysis was used in this study to investigate the anti-COAD effect and mechanism of Camellia luteoflora.RESULTS Firstly,a total of 13 compounds were identified.Secondly,10 active ingredients for 204 potential targets were screened and protein-protein interaction analysis showed that TP53,STAT3,ESR1,MAPK8,AKR1C3,RELA,CYP19A1,CYP1A1,JUN and CYP17A1 were hub targets.GO and KEGG enrichment analyses revealed that Camellia luteoflora exerted anti-COAD effect through multiple functions and pathways.Then,the analysis of survival and stage indicated that TP53 was highly expressed in COAD and the overall survival of high-TP53 and high-CYP19A1 COAD patients was significantly shorter than the low group and there was significant difference in MAPK and RELA expression between different stages.Finally,the molecular docking results demonstrated the binding affinities and sites between active ingredients and TP53,STAT3,ESR1.CONCLUSION Our study systematically demonstrated the potential anti-COAD mechanism of Camellia luteoflora and provided a theoretical basis for its further application in the COAD treatment.展开更多
The aim of this study was to explore the mechanism of action of sea buckthorn polyphenols in the treatment of hyperlipidemia through network pharmacology and molecular docking.The TCMSP pharmacology database was used ...The aim of this study was to explore the mechanism of action of sea buckthorn polyphenols in the treatment of hyperlipidemia through network pharmacology and molecular docking.The TCMSP pharmacology database was used to screen the polyphenols present in sea buckthorn,and then the SwissTargetPrediction and Uniprot databases were used to obtain the potential targets of sea buckthorn polyphenols,which were supplemented by the literature.In total,7 polyphenols and 154 potential targets were obtained.Through GeneCards,OMIM database,1358 hyperlipidemia-related targets were collected.We found that there were 101 targets at the intersection of components and diseases.Through GO and KEGG enrichment analysis,27 core targets were obtained,which were AKT1,TNF,TP53,IL-6,etc.in order of degree value.174 pathways were obtained from KEGG enrichment analysis,including AGE-RAGE signaling pathway in diabetic complications,fl uid shear stress and atherosclerosis,lipid and atherosclerosis,etc.The molecular docking of the main components to the targets was performed using OpenBabelGUI,AutoDockTools-1.5.6 software.Finally,the results were visualized using Cytoscape 3.9.1 software.The molecular docking results showed that sea buckthorn polyphenols have good binding ability with the key targets.Among them,such as quercetin and kaempferol,have good binding ability with TNF,TP53 and IL-6.For example,TNF binds to quercetin with a binding energy of-5.34 kcal/mol and to kaempferol with a binding energy of-6.22 kcal/mol;TP53 binds to kaempferol with a binding energy of-5.32 kcal/mol;IL-6 binds to quercetin with a binding energy of-5.62 kcal/mol,etc.Therefore,the network pharmacology study showed that the treatment of hyperlipidemia by sea buckthorn polyphenols can be realized by multi-component-multi-target-multi-pathway together,which provides some reference for the later study of sea buckthorn polyphenols in the treatment of hyperlipidemia.展开更多
Objective To evaluate the in vitro anti-diabetic effects of Bryonia dioica roots extracts,in-cluding water-acetone extracts and their ethyl acetate and butanol fractions,and chloroform-methanol extracts.Methods The to...Objective To evaluate the in vitro anti-diabetic effects of Bryonia dioica roots extracts,in-cluding water-acetone extracts and their ethyl acetate and butanol fractions,and chloroform-methanol extracts.Methods The total phenolic,flavonoid,flavonol,and saponin contents in the Bryonia dioica root extracts(chloroform-methanol extracts,water-acetone extracts and their ethyl acetate and butanol fractions)were determined using colorimetric methods with Folin-Ciocalteu,aluminum trichloride,and vanillin reagents,respectively.The in vitro anti-diabetic activity was evaluated by measuring the half-maximal inhibitory concentration(IC_(50))values of these root extracts againstα-amylase andα-glucosidase activities,evaluating their effects onα-amy-lase kinetics,quantifying the inhibition of bovine serum albumin(BSA)glycation using fluo-rometry to assess advanced glycation end products(AGE)production,and determining glu-cose uptake by isolated rat hemidiaphragm.Additionally,molecular docking analysis was conducted to investigate the binding affinity and interaction types between Bryonia dioica lig-ands(cucurbitacin B,bryogénin,vitexin,and isovitexin)and target enzymes,and a phyto-chemical-targets interaction network was constructed.Results Forα-amylase inhibition,ethyl acetate fraction demonstrated the most potent activi-ty(IC_(50)=145.95μg/mL),followed by chloroform-methanol extract(IC_(50)=300.86μg/mL).Water-acetone root extracts and their ethyl acetate and butanol fractions inhibited theα-glucosidase activity with IC50 values ranging from 562.88 to 583.90μg/mL.Both ethyl acetate and butanol fractions strongly inhibited non-enzymatic BSA glycation(IC_(50)=318.26 and 323.12μg/mL,respectively).The incubation of isolated rat hemidiaphragms with the ethyl acetate fraction(5 mg/mL)significantly increased glucose uptake(35.16%;P<0.0001),exceeding the effects of insulin(29.27%),chloroform-methanol extract(24.07%),and catechin(15.27%).Molecular docking revealed that cucurbitacin B exhibited the strongest docking scores againstα-amylase(-16.4 kcal/mol),andα-glucosidase(-14.2 kcal/mol).Compared with other ligands,isovitexin formed the maximum number of hydrogen bonds with theα-amylase active site residues(Asp300,Asp197,and Glu233),α-glucosidase residues(Ser13,Arg44,Met86,Gly10,Asp39,and Tyr131)and other residues(Arg195,Trp59,His299,and Tyr62).Network analysis identified 36 overlapping targets between Bryonia dioica phyto-chemicals and type 2 diabetes mellitus-associated genes,with cucurbitacins and polyphenols interacting withα-amylase,α-glucosidase,and Glut4 translocation pathway targets.Conclusion Bryonia dioica root extracts demonstrated promising in vitro anti-diabetic activi-ty through multiple mechanisms,including the inhibitory effect on digestive enzymes,pro-tein antiglycation potential,and enhancement of glucose uptake,suggesting their potential as a source for anti-diabetic drugs development.展开更多
Background:Sensitive skin affects a substantial portion of the global population and has significant implications for skin health and well-being.In addition to unpleasant sensory effects,individuals with sensitive ski...Background:Sensitive skin affects a substantial portion of the global population and has significant implications for skin health and well-being.In addition to unpleasant sensory effects,individuals with sensitive skin were likely to be more susceptible to hyperpigmentation.However,the association between sensitive skin and hyperpigmentation,as well as the underlying molecular mechanisms,remain unclear.Objective:This study aims to investigate the correlation and intrinsic mechanisms between sensitive skin and hyperpigmentation through network pharmacology combined with molecular docking.Materials and Methods:The targets associated with sensitive skin and hyperpigmentation were collected from the human gene database,GeneCards.Subsequently,the protein-protein interaction(PPI)network,Kyoto Encyclopedia of Genes and Genomes(KEGG),and Gene Ontology(GO)enrichment analysis were performed to explore the biological connections between sensitive skin and hyperpigmentation.Additionally,the targets of 15 active compounds with reported lightening effects were collected from TCMSP,BATMAN and SymMap databases.Target analysis and molecular docking were performed to identify potential candidates for addressing hyperpigmentation on sensitive skin.The anti-melanogenesis effect of the identified candidate was verified in B16F10 cells.Results:A total of 16971 sensitive skin targets and 11382 hyperpigmentation targets were screened,and 9693 overlapping targets were identified,with a core set comprising 164 targets.The combination of PPI network,KEGG and GO analysis revealed the key role of tyrosinase and immune-mediated inflammation in pigmentation on sensitive skin.Among the 15 active compounds,oxyresveratrol was identified as having a high correlation with the core set targets and predicted strong inhibition of Tyrosine-protein Kinase Kit.The application of oxyresveratrol exhibited a dose-dependent suppression of melanin production in B16F10 cells.Conclusion:This study suggested the crucial roles of immune-mediated inflammation in sensitive skin and hyperpigmentation,as well as highlighted the potential of oxyresveratrol in addressing hyperpigmentation on sensitive skin.These comprehensive findings provide a deeper understanding of the connection mechanism between sensitive skin and hyperpigmentation,offering new insights for the development of targeted treatments and interventions.展开更多
The inflammatory response is a crucial physiological process that can lead to tissue damage and is considered a causative factor for various chronic diseases,such as rheumatoid arthritis.Recent research has focused on...The inflammatory response is a crucial physiological process that can lead to tissue damage and is considered a causative factor for various chronic diseases,such as rheumatoid arthritis.Recent research has focused on exploring valuable nutrients derived from Cannabis sativa L.(hemp)seeds,particularly hemp seed proteins.Therefore,this study aimed to investigate the release of anti-inflammatory peptides from Lactobacillus paraplantarum-fermented hemp seed proteins.To confirm the complete hydrolysis of hemp seed proteins during the fermentation process,sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)was employed.Further,the isolation and purification of peptides were achieved through ultrafiltration.The identity of peptides was nextly established using ultra-high performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS).The results revealed a total of 39 identified peptides in fermented hemp seeds,with 9 peptides selected based on their relative quantity.Notably,AAELIGVP(P1),AAVPYPQ(P2),VFPEVAP(P4),DVIGVPLG(P6),and PVPKVL(P9)demonstrated strong anti-inflammatory abilities in lipopolysaccharide(LPS)-induced RAW264.7 macrophage cells.Molecular docking was used to understand the potential anti-inflammatory mechanism of these 5 peptides,and in silico results indicated that P1,P2,P4,P6,and P9 could bind to the active sites of toll-like receptor 4(TLR-4),nuclear factor-κB(NF-κB),and inhibitor of NF-κB kinase(IKK)with higher binding energies.Overall,these findings indicate that hemp seeds have potential to be a source of bioactive peptides for functional foods with anti-inflammatory properties.展开更多
Objective This study aimed to explore the mechanism of obtaining yang from yin in Yougui pill against aging based on network pharmacology and molecular docking technology.Methods The active components and targets of Y...Objective This study aimed to explore the mechanism of obtaining yang from yin in Yougui pill against aging based on network pharmacology and molecular docking technology.Methods The active components and targets of Yougui Pill were obtained by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)database and the Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine(BATMEN-TCM)database,and kidney deficiency syndrome-related targets were obtained in the Symptom Mapping(SymMap)Database,a traditional Chinese medicine(TCM)syndrome correlation database.The protein–protein interaction(PPI)network was constructed by using the STRING11.5 database.Then,we used CytoScape3.9.0 software to construct the network of TCM–active components–potential targets,and the core TCM components and core targets of Yougui Pill for the treatment of kidney deficiency were obtained.The function analysis of Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathway enrichment analysis were performed in the Database for Annotation,Visualization,and Integrated Discovery(DAVID).Finally,preliminary verification was performed with the help of molecular docking technology.Results A total of 147 active components of 9 drugs of Yougui Pill(Fuzi[Aconiti Lateralis Radix Praeparata],Shudihaung[Rehmanniae Radix Praeparata],Gouqi[Lycii Fructus],Shanyao[Rhizoma Dioscoreae],Shanzhuyu[Corni Fructus],Tusizi[Cuscutae Semen],Danggui[Angelicae Sinensis Radix],Duzhong[Eucommiae Cortex],Lujiaojiao[Cervi Cornus Colla])were obtained,corresponding to 233 targets.A total of 2,235targets related to kidney deficiency syndrome and 43 potential therapeutic targets were obtained after the intersection.The core TCM components mainly included quercetin,kaempferol,diosgenin,β-carotene,etc.The core targets involved Trp53(Tp53),Akt1,Pparg,Nr3c1,App,Casp8,Mapk1,Cav1,and Ctnnb1.A total of 27biological processes,10 cellular components,and 11 molecular functions were obtained by gene function enrichment analysis,mainly related to the regulation of gene expression,cell apoptosis and proliferation,and the response to estrogen.A total of 51 KEGG signaling pathways,mainly involving a variety of cancer pathways,apoptosis pathways,longevity regulation pathways,etc.Conclusion Yougui Pill can play a role in preventing and treating kidney deficiency syndrome through multiple targets and pathways.展开更多
The purpose of this study was to characterize the chemical components of the extract of Solanum Nigrum Linn.(SNL),by LC-MS/MS,and to identify 33 compounds by positive and negative total ion flow maps.Network pharmacol...The purpose of this study was to characterize the chemical components of the extract of Solanum Nigrum Linn.(SNL),by LC-MS/MS,and to identify 33 compounds by positive and negative total ion flow maps.Network pharmacology and molecular docking methods were used to investigate the mechanism of action of SNL against ulcerative colitis(UC).A total of 282 component target genes and 1850 disease target genes were obtained,and 157 cross-targets and 16 core-targets were obtained after crossover.A total of 20 signaling pathways such as anti-inflammatory and anti-apoptotic were obtained by GO analysis and KEGG analysis,respectively.It is possible that the anti UC eff ect can be achieved by regulating proteins such as AKT1,EGFR,NFKB1,JUN,and HSP90AA1.Molecular docking results show that the anti UC active ingredients are well docked with the target protein molecules This study provides a scientific basis for the development and utilization of SNL.展开更多
Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Method...Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections.展开更多
Background:Atherosclerosis(AS),the primary pathological foundation of cardiovascular diseases,is characterized by intricate processes including inflammation,lipid metabolism disorders,and pyroptosis.While the traditio...Background:Atherosclerosis(AS),the primary pathological foundation of cardiovascular diseases,is characterized by intricate processes including inflammation,lipid metabolism disorders,and pyroptosis.While the traditional Chinese medicine compound Dingxin Recipe(DXR)has demonstrated definitive clinical efficacy in treating AS,its therapeutic mechanisms remain unclear.This study employed an integrated approach combining network pharmacology,molecular docking,and molecular dynamics simulations(MDS)to investigate DXR’s anti-AS mechanisms.Methods:Active ingredients and targets of DXR were identified and screened using databases such as GeneCards,OMIM,and TCMSP.An“ingredient-target-disease”network was constructed to visualize these interactions.Molecular docking was utilized to assess the binding affinity between key ingredients and their respective targets.Additionally,MDS were conducted to analyze the stability of these complexes,providing robust evidence for further clinical applications and in-depth research.Results:Through network pharmacology analysis,we identified 99 active drug components,934 gene targets,and 1463 disease targets associated with DXR.Protein-protein interaction analysis revealed central regulatory nodes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these components primarily modulate processes such as inflammatory response and transcription factor activation,and are closely linked to the AGERAGE signaling pathway,lipid metabolism,and atherosclerosis pathways.Molecular docking confirmed strong binding potential between the components and their targets,while MDS further validated the stability of these interactions.Conclusion:This study elucidates that the active ingredients in DXR alleviate AS by mitigating inflammatory responses and inhibiting pyroptosis through the suppression of inflammatory factor release.These findings provide a scientific foundation for the clinical application of DXR in AS treatment.展开更多
Objective:To predict the nephrotoxicity mechanism of Lianqiao-4 through network pharmacology and molecular docking methods.Methods:The main chemical components of Lianqiao(Forsythia suspensa),Bistortae rhizoma,Ophiopo...Objective:To predict the nephrotoxicity mechanism of Lianqiao-4 through network pharmacology and molecular docking methods.Methods:The main chemical components of Lianqiao(Forsythia suspensa),Bistortae rhizoma,Ophiopogonis radix,and Clematidis radix et rhizoma,as well as nephrotoxicity-related targets,were screened through databases such as TCMSP,Swiss Target Prediction,GeneCards,and ETCM.Venny 2.1.0 was used to identify the main components of Lianqiao-4 and nephrotoxicity targets.The STRING platform and David database were utilized to construct a protein-protein interaction(PPI)network diagram,while gene function(GO)enrichment analysis and KEGG pathway analysis were conducted.The“Lianqiao-4 active ingredients-nephrotoxicity targets-signaling pathways”network model was constructed using Cytoscape 3.9.1 software.Results:Network pharmacology and molecular docking analysis revealed that the core active ingredients responsible for the nephrotoxicity mechanism of Mongolian medicine Lianqiao-4 include steroidal saponins such as ophiopogonin A,flavonoids like kaempferol and quercetin,steroidal compounds such asβ-sitosterol and sitosterol,and other key regulatory targets including STAT3,ABCG2,HSP90AA1,MMP9,PTGS2,and EGFR.Major pathways involved include lipid and atherosclerosis,chemical carcinogenesis-DNA adducts,and arachidonic acid metabolism.Conclusion:Mongolian medicine Lianqiao-4 exerts its therapeutic effect on nephrotoxicity through multiple components,targets,and pathways,pending experimental verification.展开更多
OBJECTIVE:To explore the mechanism of Danggui Buxue decoction(当归补血汤,DBD)for the treatment of gastric ulcer(GU),based on network pharmacology and in vivo experiments.METHODS:A network pharmacology strategy was use...OBJECTIVE:To explore the mechanism of Danggui Buxue decoction(当归补血汤,DBD)for the treatment of gastric ulcer(GU),based on network pharmacology and in vivo experiments.METHODS:A network pharmacology strategy was used to predict the main components,candidate targets,and potential signaling pathways.Then,molecular docking was performed to further investigate the interactions and binding affinities between the main components and primary targets.Finally,a mouse model of ethanolinduced gastric ulcers was established to confirm the efficacy and potential therapeutic benefits of DBD,and candidate targets were finally identified.RESULTS:A total of 22 active components and 220 target genes were found to be associated with DBD.In addition,343 GU-related target genes and 57 target genes specific to DBD treatment of GU were identified.The Gene Ontology functional enrichment analysis revealed 510 entries for biological processes,36 entries for cell composition,and 69 entries for molecular functions.In the pathway enrichment analysis,143 signaling pathways were identified.Additionally,the molecular docking results revealed that the main active components of DBD exhibited a strong binding capacity with key proteins,including tumor necrosis factor,AKT serine/threonine kinase 1,interleukin-6,vascular endothelial growth factor,and interleukin-1 Beta.Among these,quercetin,kaempferol,formononetin,isorhamnetin,and beta-sitosterol displayed the strongest binding affinities for these key proteins.in vivo experiments showed that DBD pretreatment effectively protected gastric mucosa,and the benefits might be attributed to the downregulation of above key proteins.CONCLUSIONS:Based on network pharmacology analysis and in vivo experiments,we conclude that DBD leads to the protection and healing of the gastric mucosa by targeting genes and pathways,thus effectively countering the development and progression of GU.展开更多
Objective This study aimed to investigate the potentialmechanism of Mahuang Xixin Fuzi Decoction in treating allergic rhinitis(AR)and predict its quality markers(Q-markers)using network pharmacology and molecular dock...Objective This study aimed to investigate the potentialmechanism of Mahuang Xixin Fuzi Decoction in treating allergic rhinitis(AR)and predict its quality markers(Q-markers)using network pharmacology and molecular docking techniques.Methods The chemical components of the herbal constituents in Mahuang Xixin Fuzi Decoction were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP).Active component-related targets were screened using the SwissTargetPrediction database,while AR-related targets were obtained from the GeneCards database.The intersection targets(potential therapeutic targets of the Mahuang Xixin Fuzi Decoction for AR)were identified via the Venn 2.1.0 platform,and a Venn diagram was constructed.A“herb–active component–potential target”network was established using Cytoscape 3.10.0,and core components were screened via topological analysis.Protein–protein interaction(PPI)network of the intersection targets was built using the String database,followed by topological analysis to identify core targets.Gene Ontology(GO)enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis were performed on the core targets using the DAVID database.Molecular docking of core components and targets was conducted using AutoDock Tools 1.5.7.Results Twenty-seven active components were identified from TCMSP,with 506 corresponding targets predicted by SwissTargetPrediction.A total of 2,447 AR-related targets were retrieved from GeneCards,yielding 165 intersection targets.Network analysis revealed naringenin,genkwanin,deoxyandrographolide,karakoline,and karanjin as core components.PPI network analysis identified 32 core targets.GO enrichment analysis screened 834 functional items,including 618 biological processes,72 cellular components,and 144 molecular functions.KEGG analysis identified 165 signaling pathways.Molecular docking confirmed stable binding between core components and key targets.Conclusion Multiple chemical components in Mahuang Xixin Fuzi Decoction may ameliorate AR by regulating diverse targets and biological processes.Naringenin,genkwanin,and deoxyandrographolide are proposed as potential Q-markers for this decoction in AR treatment.展开更多
KangBingDuKouFuYe(KBDKFY)is widely used to treat influenza,upper respiratory tract infections,mumps and other diseases.Due to their diverse active ingredients,it is believed that they may have excellent anti-inflammat...KangBingDuKouFuYe(KBDKFY)is widely used to treat influenza,upper respiratory tract infections,mumps and other diseases.Due to their diverse active ingredients,it is believed that they may have excellent anti-inflammatory,antibacterial and antiviral effects.Therefore,we believe they may have multiple therapeutic targets for throat inflammation caused by bacterial or viral infections.This study utilizes network pharmacology methods to analyze the therapeutic effects of KBDKFY on Bacterial Pharyngeal Tonsillitis and Viral Pharyngitis,aiming to identify its active ingredients,action targets and related pathways through molecular docking.Additionally,it determines the affinity between the main active ingredient and the core target before conducting in vitro bacteriostatic tests.The analysis results show that KBDKFY contains multiple active ingredients and potential targets for treating Bacterial Pharyngeal Tonsillitis and Viral Pharyngitis.KEGG enrichment analysis indicates that KBDKFY may have therapeutic effects on these conditions through pathways such as pathways in cancer,Kaposi sarcoma-associated herpesvirus infection,PI3K-Akt signaling pathway,and others.This provides a theoretical basis for further exploring pharmacological effects and clinical applications of KBDKFY.展开更多
This study aims to explore the mechanism by which flavonoids in Crataegus pinnatifida fruit improve Alzheimer’s disease(AD)through network pharmacology and molecular docking technology.The flavonoid components presen...This study aims to explore the mechanism by which flavonoids in Crataegus pinnatifida fruit improve Alzheimer’s disease(AD)through network pharmacology and molecular docking technology.The flavonoid components present in Crataegus pinnatifida fruit were gathered from the HERB,HIT,and ETCM databases,and were further supplemented by relevant published literature.The PubChem and SwissTargetPrediction databases were utilized to predict potential targets,and a“Crataegus pinnatifida fruit-active ingredient-target”network was constructed using Cytoscape 3.9.0 software.The GeneCards database was utilized to identify targets associated with AD,which were subsequently intersected with the active targets of Crataegus pinnatifi da fruit.A protein-protein interaction(PPI)network was constructed using the STRING platform.KEGG enrichment analysis of the core targets was conducted on an online bioinformatics mapping platform,while molecular docking of the primary active components and core targets was executed using AutoDock software.Eight flavonoids and 160 potential targets were identifi ed from Crataegus pinnatifi da fruit,of which 147 targets were linked to AD.The results of the“Crataegus pinnatifi da fruit-active ingredient-target”network indicated that quercetin was the principal flavonoid active ingredient.PPI analysis revealed that SRC and EGFR were the key targets,and KEGG analysis identifi ed the main enrichment pathways as Pathways in cancer,PI3K/Akt signaling pathway,and Proteoglycans in cancer.Molecular docking confi rmed the strong binding affi nity between the core targets and the primary active ingredient.The interaction of quercetin with the key targets SRC and EGFR may represent a signifi cant mechanism by which flavonoids from Crataegus pinnatifi da fruit contribute to the improvement of AD.展开更多
文摘Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.
文摘Background:In this present study,we have screened major phytoconstituents of Nilavembu Kudineer against critical COVID-19 target proteins that cause severe pneumonia globally.In addition,a human receptor protein that facilitates viral entry into the host cell was also targeted.Methods:Phytoconstituents derived from Nilavembu Kudineer formulation were docked against 12 major proteins,which help viral entry,viral proliferation,and a human receptor facilitate the viral entry into the host cells.The major metabolites of Nilavembu Kudineer were retrieved based on literature from the PubChem database.The docked complex was subjected to MD simulation studies to verify its binding mode and the stability of the interactions.The binding energy analysis was performed to estimate the binding affinity between the compounds and their respective receptors using MM/GBSA.Results:Docking studies have shown that three major plants in the polyherbal formulation,Andrographis paniculata,Mollugo cerviana,and Zingiber officinale,have 14 potential compounds that have better binding affinity against COVID-19 proteins and their host receptor protein.MD studies and binding energy calculations also confirmed that these compounds possess better stability and strong binding energy with these proteins.Conclusion:In silico analyses suggest that phytoconstituents from Nilavembu Kudineer possess promising multi-target antiviral activity against COVID-19.These findings provide a rationale for further experimental studies to validate their therapeutic potential for the treatment of COVID-19.
文摘Pimpinella anisum,commonly known as anise,is generally used in both folk medicine and the culinary world.In traditional medicine,it is valued for its digestive,respiratory,and antispasmodic properties.This study aims to examine the volatile compounds and antibacterial effect of P.anisum essential oil(PAEO)as well as for the first time its genotoxicity employing both in vitro and computational approaches.Gas chromatography-mass spectrometry(GC-MS)analysis identified anethole as the principal compound,which comprises 92.47%of PAEO.PAEO was tested for its potential antibacterial properties against Bacillus subtilis ATCC 6633,Listeria innocua ATCC 33090,Staphylococcus aureus ATCC 29213,Klebsiella aerogenes ATCC 13048,and a clinical strain of Salmonella enterica serotype Typhi.PAEO displayed noteworthy antibacterial action toward all tested bacteria,especially Staphylococcus aureus,with an inhibition zone of 21.43±0.87 mm,as determined by the disc-diffusion test.Varied between 0.0625%and 2%v/v,while the MBC values ranged from 0.125%to 8%v/v,reflecting the strength of the tested EO.The MBC/MIC ratios indicated the bactericidal nature of PAEO.The results of molecular docking revealed strong binding interactions between key PAEO molecules and microbial target proteins.ADMET(Absorption,Distribution,Metabolism,Excretion,and Toxicity)analysis confirmed favorable pharmacokinetic properties,indicating its potential as a safe therapeutic agent.Additionally,genotoxicity was assessed using the comet assay,which demonstrated minimal genotoxic risk,affirming the oil’s safety.These results highlight the promising antimicrobial properties of PAEO and its possible use as an active agent in the pharmacy,food,and cosmetic sectors.
文摘To elucidate the mechanisms underlying the therapeutic effects of the herbal medicine pair Smilax Glabra and Semen Coicis in treating gout and hyperuricemia,a comprehensive analysis was conducted using network pharmacology and molecular docking methods.Disease-associated targets for gout and hyperuricemia were identified from the GeneCards,OMIM,Disgenet,and TTD databases,while the key active components and their corresponding targets for Smilax Glabra and Semen Coicis were obtained from the TCSMP database.The intersection of these targets enabled the construction of a protein-protein interaction(PPI)network,which was subsequently visualized and analyzed.Core targets were further subjected to Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses to elucidate the biological processes and pathways involved.Molecular docking was then employed to validate the reliability of the interactions between the active components and the identified targets.The analysis revealed that Smilax Glabra and Semen Coicis contained 15 bioactive components that interacted with 393 potential targets,while gout and hyperuricemia were associated with 660 targets in total.The primary active compounds implicated in treating these conditions included diosgenin,quercetin,and naringenin,which were found to interact with crucial hub targets such as BCL2,CASP3,and MAPK3.These interactions suggested that the herbal medicine pair modulated several biological processes,including gland development and the regulation of body fluid levels,through pathways involving membrane rafts,membrane microdomains,and nuclear receptor activities.Enrichment analyses highlighted their involvement in multiple signaling pathways,such as EGFR tyrosine kinase inhibitor resistance,phospholipase D signaling,and platelet activation.Molecular docking confirmed the strong binding affinities between the hub genes and the major active components,supporting their potential role in therapeutic efficacy.This study demonstrated that Smilax Glabra and Semen Coicis might offer a promising therapeutic strategy for gout and hyperuricemia by targeting multiple molecular components,biological functions,and pathways.The findings underscored the unique potential of traditional Chinese medicine(TCM)in managing complex diseases by leveraging synergistic effects across diverse biological mechanisms.
基金supported by the National Natural Science Foundation of China(No.62273117)Pre-research Task(No.SKLRS202418B)of State Key Laboratory of Robotics and Systems(HIT).
文摘Bio-inspired magnetic helical microrobots have great potential for biomedical and micromanipulation applications. Precise interaction with objects in liquid environments is an important prerequisite and challenge for helical microrobots to perform various tasks. In this study, an automatic control method is proposed to realize the axial docking of helical microrobots with arbitrarily placed cylindrical objects in liquid environments. The docking process is divided into ascent, approach, alignment, and insertion stages. First, a 3D docking path is planned according to the positions and orientations of the microrobot and the target object. Second, a steering-based 3D path-following controller guides the helical microrobot to rise away from the container bottom and approach the target along the path. Third, based on path design with gravity compensation and steering output limits, alignment of position and orientation can be accomplished simultaneously. Finally, the helical microrobot completes the docking under the rotating magnetic field along the target orientation. Experiments verified the automatic docking of the helical microrobot with static targets, including connecting with micro-shafts and inserting into micro-tubes. The object grasping of a reconfigurable helical microrobot aided by 3D automatic docking was also demonstrated. This method enables precise docking of helical microrobots with objects, which might be used for capture and sampling, in vivo navigation control, and functional assembly of microrobots.
文摘Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacological potential of bioactive compounds derived from Pistacia integerrima in inhibiting 5-lipoxygenase(5-LOX),a key enzyme implicated in inflammation and cancer progression.The current study aimed to evaluate the lipoxygenase inhibitory activity of bioactive compounds from Pistacia integerrima and assess their potential for therapeutic development in the context of inflammation and cancer treatment.Methods:Three major compounds-spinacetin(1),patuletin(2),and pistagremic acid(3)-were isolated from Pistacia integerrima and analyzed for their lipoxygenase inhibitory activity.Biochemical assays and molecular docking studies were performed to assess their effectiveness in inhibiting 5-LOX.Results:All three compounds demonstrated significant inhibition of lipoxygenase activity.Spinacetin(1)and patuletin(2)exhibited the most potent inhibitory effects,with IC_(50)values of 40.34μM and 45.04μM,respectively.Molecular docking studies revealed that patuletin(2)had the highest binding affinity(−7.717 kcal/mol)against 5-LOX,followed by spinacetin(1)with a binding affinity of−6.074 kcal/mol.In-depth in silico analysis highlighted the drug-likeness of spinacetin(1)and its favorable toxicological profile,suggesting its suitability for therapeutic development.Conclusion:The study demonstrates that compounds from Pistacia integerrima,particularly spinacetin and patuletin,have significant lipoxygenase inhibitory activity,with spinacetin showing promise as a lead candidate for lipoxygenase-targeted therapies.The findings reinforce the therapeutic relevance of Pistacia integerrima and suggest that its bioactive compounds may serve as safer,plant-based alternatives to conventional anti-inflammatory and anticancer treatments.
基金Supported by Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2023]-554and the National Natural Science Foundation of China,No.32360144.
文摘BACKGROUND Camellia luteoflora is a unique variety of Camellia in China which is only distributes in Chishui City,Guizhou Province and Luzhou City,Sichuan Province.Its dried leaves are used by local residents as tea to drink with light yellow and special aroma for health care.It has high potential economic medicinal value.Colon adenocarcinoma(COAD)is the third most frequent malignancy and its incidence and mortality is increasing.However,the current common treatments for COAD bring great side effects.In recent years,natural products and their various de-rivatives have shown significant potential to supplement conventional therapies and to reduce associated toxicity while improving efficacy.In order to overcome the limitations of traditional treatment methods,the global demand and development of natural anti-COAD drugs were increasingly hindered.AIM To investigate the potential targets and mechanisms of Camellia luteoflora anti-COAD.METHODS Nuclear magnetic resonance and mass spectrometry was used to identified the compounds of Camellia luteoflora.Network pharmacology analysis and survival analysis was used in this study to investigate the anti-COAD effect and mechanism of Camellia luteoflora.RESULTS Firstly,a total of 13 compounds were identified.Secondly,10 active ingredients for 204 potential targets were screened and protein-protein interaction analysis showed that TP53,STAT3,ESR1,MAPK8,AKR1C3,RELA,CYP19A1,CYP1A1,JUN and CYP17A1 were hub targets.GO and KEGG enrichment analyses revealed that Camellia luteoflora exerted anti-COAD effect through multiple functions and pathways.Then,the analysis of survival and stage indicated that TP53 was highly expressed in COAD and the overall survival of high-TP53 and high-CYP19A1 COAD patients was significantly shorter than the low group and there was significant difference in MAPK and RELA expression between different stages.Finally,the molecular docking results demonstrated the binding affinities and sites between active ingredients and TP53,STAT3,ESR1.CONCLUSION Our study systematically demonstrated the potential anti-COAD mechanism of Camellia luteoflora and provided a theoretical basis for its further application in the COAD treatment.
基金supported by 2024 Liaoning Province Graduate Education Teaching Reform Research Project(LNYJG2024251).
文摘The aim of this study was to explore the mechanism of action of sea buckthorn polyphenols in the treatment of hyperlipidemia through network pharmacology and molecular docking.The TCMSP pharmacology database was used to screen the polyphenols present in sea buckthorn,and then the SwissTargetPrediction and Uniprot databases were used to obtain the potential targets of sea buckthorn polyphenols,which were supplemented by the literature.In total,7 polyphenols and 154 potential targets were obtained.Through GeneCards,OMIM database,1358 hyperlipidemia-related targets were collected.We found that there were 101 targets at the intersection of components and diseases.Through GO and KEGG enrichment analysis,27 core targets were obtained,which were AKT1,TNF,TP53,IL-6,etc.in order of degree value.174 pathways were obtained from KEGG enrichment analysis,including AGE-RAGE signaling pathway in diabetic complications,fl uid shear stress and atherosclerosis,lipid and atherosclerosis,etc.The molecular docking of the main components to the targets was performed using OpenBabelGUI,AutoDockTools-1.5.6 software.Finally,the results were visualized using Cytoscape 3.9.1 software.The molecular docking results showed that sea buckthorn polyphenols have good binding ability with the key targets.Among them,such as quercetin and kaempferol,have good binding ability with TNF,TP53 and IL-6.For example,TNF binds to quercetin with a binding energy of-5.34 kcal/mol and to kaempferol with a binding energy of-6.22 kcal/mol;TP53 binds to kaempferol with a binding energy of-5.32 kcal/mol;IL-6 binds to quercetin with a binding energy of-5.62 kcal/mol,etc.Therefore,the network pharmacology study showed that the treatment of hyperlipidemia by sea buckthorn polyphenols can be realized by multi-component-multi-target-multi-pathway together,which provides some reference for the later study of sea buckthorn polyphenols in the treatment of hyperlipidemia.
文摘Objective To evaluate the in vitro anti-diabetic effects of Bryonia dioica roots extracts,in-cluding water-acetone extracts and their ethyl acetate and butanol fractions,and chloroform-methanol extracts.Methods The total phenolic,flavonoid,flavonol,and saponin contents in the Bryonia dioica root extracts(chloroform-methanol extracts,water-acetone extracts and their ethyl acetate and butanol fractions)were determined using colorimetric methods with Folin-Ciocalteu,aluminum trichloride,and vanillin reagents,respectively.The in vitro anti-diabetic activity was evaluated by measuring the half-maximal inhibitory concentration(IC_(50))values of these root extracts againstα-amylase andα-glucosidase activities,evaluating their effects onα-amy-lase kinetics,quantifying the inhibition of bovine serum albumin(BSA)glycation using fluo-rometry to assess advanced glycation end products(AGE)production,and determining glu-cose uptake by isolated rat hemidiaphragm.Additionally,molecular docking analysis was conducted to investigate the binding affinity and interaction types between Bryonia dioica lig-ands(cucurbitacin B,bryogénin,vitexin,and isovitexin)and target enzymes,and a phyto-chemical-targets interaction network was constructed.Results Forα-amylase inhibition,ethyl acetate fraction demonstrated the most potent activi-ty(IC_(50)=145.95μg/mL),followed by chloroform-methanol extract(IC_(50)=300.86μg/mL).Water-acetone root extracts and their ethyl acetate and butanol fractions inhibited theα-glucosidase activity with IC50 values ranging from 562.88 to 583.90μg/mL.Both ethyl acetate and butanol fractions strongly inhibited non-enzymatic BSA glycation(IC_(50)=318.26 and 323.12μg/mL,respectively).The incubation of isolated rat hemidiaphragms with the ethyl acetate fraction(5 mg/mL)significantly increased glucose uptake(35.16%;P<0.0001),exceeding the effects of insulin(29.27%),chloroform-methanol extract(24.07%),and catechin(15.27%).Molecular docking revealed that cucurbitacin B exhibited the strongest docking scores againstα-amylase(-16.4 kcal/mol),andα-glucosidase(-14.2 kcal/mol).Compared with other ligands,isovitexin formed the maximum number of hydrogen bonds with theα-amylase active site residues(Asp300,Asp197,and Glu233),α-glucosidase residues(Ser13,Arg44,Met86,Gly10,Asp39,and Tyr131)and other residues(Arg195,Trp59,His299,and Tyr62).Network analysis identified 36 overlapping targets between Bryonia dioica phyto-chemicals and type 2 diabetes mellitus-associated genes,with cucurbitacins and polyphenols interacting withα-amylase,α-glucosidase,and Glut4 translocation pathway targets.Conclusion Bryonia dioica root extracts demonstrated promising in vitro anti-diabetic activi-ty through multiple mechanisms,including the inhibitory effect on digestive enzymes,pro-tein antiglycation potential,and enhancement of glucose uptake,suggesting their potential as a source for anti-diabetic drugs development.
文摘Background:Sensitive skin affects a substantial portion of the global population and has significant implications for skin health and well-being.In addition to unpleasant sensory effects,individuals with sensitive skin were likely to be more susceptible to hyperpigmentation.However,the association between sensitive skin and hyperpigmentation,as well as the underlying molecular mechanisms,remain unclear.Objective:This study aims to investigate the correlation and intrinsic mechanisms between sensitive skin and hyperpigmentation through network pharmacology combined with molecular docking.Materials and Methods:The targets associated with sensitive skin and hyperpigmentation were collected from the human gene database,GeneCards.Subsequently,the protein-protein interaction(PPI)network,Kyoto Encyclopedia of Genes and Genomes(KEGG),and Gene Ontology(GO)enrichment analysis were performed to explore the biological connections between sensitive skin and hyperpigmentation.Additionally,the targets of 15 active compounds with reported lightening effects were collected from TCMSP,BATMAN and SymMap databases.Target analysis and molecular docking were performed to identify potential candidates for addressing hyperpigmentation on sensitive skin.The anti-melanogenesis effect of the identified candidate was verified in B16F10 cells.Results:A total of 16971 sensitive skin targets and 11382 hyperpigmentation targets were screened,and 9693 overlapping targets were identified,with a core set comprising 164 targets.The combination of PPI network,KEGG and GO analysis revealed the key role of tyrosinase and immune-mediated inflammation in pigmentation on sensitive skin.Among the 15 active compounds,oxyresveratrol was identified as having a high correlation with the core set targets and predicted strong inhibition of Tyrosine-protein Kinase Kit.The application of oxyresveratrol exhibited a dose-dependent suppression of melanin production in B16F10 cells.Conclusion:This study suggested the crucial roles of immune-mediated inflammation in sensitive skin and hyperpigmentation,as well as highlighted the potential of oxyresveratrol in addressing hyperpigmentation on sensitive skin.These comprehensive findings provide a deeper understanding of the connection mechanism between sensitive skin and hyperpigmentation,offering new insights for the development of targeted treatments and interventions.
基金the 4^(th) Brain Korea(BK)21 Plus Project(4299990913942)financed by the Korean Government,Republic of Korea.
文摘The inflammatory response is a crucial physiological process that can lead to tissue damage and is considered a causative factor for various chronic diseases,such as rheumatoid arthritis.Recent research has focused on exploring valuable nutrients derived from Cannabis sativa L.(hemp)seeds,particularly hemp seed proteins.Therefore,this study aimed to investigate the release of anti-inflammatory peptides from Lactobacillus paraplantarum-fermented hemp seed proteins.To confirm the complete hydrolysis of hemp seed proteins during the fermentation process,sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)was employed.Further,the isolation and purification of peptides were achieved through ultrafiltration.The identity of peptides was nextly established using ultra-high performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS).The results revealed a total of 39 identified peptides in fermented hemp seeds,with 9 peptides selected based on their relative quantity.Notably,AAELIGVP(P1),AAVPYPQ(P2),VFPEVAP(P4),DVIGVPLG(P6),and PVPKVL(P9)demonstrated strong anti-inflammatory abilities in lipopolysaccharide(LPS)-induced RAW264.7 macrophage cells.Molecular docking was used to understand the potential anti-inflammatory mechanism of these 5 peptides,and in silico results indicated that P1,P2,P4,P6,and P9 could bind to the active sites of toll-like receptor 4(TLR-4),nuclear factor-κB(NF-κB),and inhibitor of NF-κB kinase(IKK)with higher binding energies.Overall,these findings indicate that hemp seeds have potential to be a source of bioactive peptides for functional foods with anti-inflammatory properties.
基金Jiangxi University of Traditional Chinese Medicine Schoollevel Postgraduate Innovation Special Funds for Funding Projects(School Word[2023]No.33)Jiangxi Province Traditional Chinese Medicine Young and Middle-aged Backbone Talent Training Program(Third Batch)Project(Gan Traditional Chinese Medicine Science and Education[2021]No.4)。
文摘Objective This study aimed to explore the mechanism of obtaining yang from yin in Yougui pill against aging based on network pharmacology and molecular docking technology.Methods The active components and targets of Yougui Pill were obtained by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)database and the Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine(BATMEN-TCM)database,and kidney deficiency syndrome-related targets were obtained in the Symptom Mapping(SymMap)Database,a traditional Chinese medicine(TCM)syndrome correlation database.The protein–protein interaction(PPI)network was constructed by using the STRING11.5 database.Then,we used CytoScape3.9.0 software to construct the network of TCM–active components–potential targets,and the core TCM components and core targets of Yougui Pill for the treatment of kidney deficiency were obtained.The function analysis of Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathway enrichment analysis were performed in the Database for Annotation,Visualization,and Integrated Discovery(DAVID).Finally,preliminary verification was performed with the help of molecular docking technology.Results A total of 147 active components of 9 drugs of Yougui Pill(Fuzi[Aconiti Lateralis Radix Praeparata],Shudihaung[Rehmanniae Radix Praeparata],Gouqi[Lycii Fructus],Shanyao[Rhizoma Dioscoreae],Shanzhuyu[Corni Fructus],Tusizi[Cuscutae Semen],Danggui[Angelicae Sinensis Radix],Duzhong[Eucommiae Cortex],Lujiaojiao[Cervi Cornus Colla])were obtained,corresponding to 233 targets.A total of 2,235targets related to kidney deficiency syndrome and 43 potential therapeutic targets were obtained after the intersection.The core TCM components mainly included quercetin,kaempferol,diosgenin,β-carotene,etc.The core targets involved Trp53(Tp53),Akt1,Pparg,Nr3c1,App,Casp8,Mapk1,Cav1,and Ctnnb1.A total of 27biological processes,10 cellular components,and 11 molecular functions were obtained by gene function enrichment analysis,mainly related to the regulation of gene expression,cell apoptosis and proliferation,and the response to estrogen.A total of 51 KEGG signaling pathways,mainly involving a variety of cancer pathways,apoptosis pathways,longevity regulation pathways,etc.Conclusion Yougui Pill can play a role in preventing and treating kidney deficiency syndrome through multiple targets and pathways.
文摘The purpose of this study was to characterize the chemical components of the extract of Solanum Nigrum Linn.(SNL),by LC-MS/MS,and to identify 33 compounds by positive and negative total ion flow maps.Network pharmacology and molecular docking methods were used to investigate the mechanism of action of SNL against ulcerative colitis(UC).A total of 282 component target genes and 1850 disease target genes were obtained,and 157 cross-targets and 16 core-targets were obtained after crossover.A total of 20 signaling pathways such as anti-inflammatory and anti-apoptotic were obtained by GO analysis and KEGG analysis,respectively.It is possible that the anti UC eff ect can be achieved by regulating proteins such as AKT1,EGFR,NFKB1,JUN,and HSP90AA1.Molecular docking results show that the anti UC active ingredients are well docked with the target protein molecules This study provides a scientific basis for the development and utilization of SNL.
基金Research Grants of Senior Research Fellowship in favor of first author(Gloak Majumdar)from Council of Scientific and Industrial Research(CSIR,New Delhi,Government of India)(CSIR-SRF)with Award No.09/1151/(0008)2020-EMR-I.
文摘Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections.
基金supported by the National Natural Science Foundation of China(82374367)Jiangxi Provincial Natural Science Foundation(20242BAB26163,20232BAB206144)+4 种基金Jiangxi Province Key Laboratory of Traditional Chinese Medicine for Cardiovascular Diseases(20242BCC32096)NATCM’s Project of High-level Construction of Key TCM Disciplines(zyyzdxk-2023113)Project of Key Discipline Construction Fund of Jiangxi University of Chinese Medicine(2023jzzdxk032)Science and Technology Innovation Team Development Program of Jiangxi University of Chinese Medicine(CXTD22011)National Traditional Chinese Medicine Inheritance and Innovation Center Construction Project.
文摘Background:Atherosclerosis(AS),the primary pathological foundation of cardiovascular diseases,is characterized by intricate processes including inflammation,lipid metabolism disorders,and pyroptosis.While the traditional Chinese medicine compound Dingxin Recipe(DXR)has demonstrated definitive clinical efficacy in treating AS,its therapeutic mechanisms remain unclear.This study employed an integrated approach combining network pharmacology,molecular docking,and molecular dynamics simulations(MDS)to investigate DXR’s anti-AS mechanisms.Methods:Active ingredients and targets of DXR were identified and screened using databases such as GeneCards,OMIM,and TCMSP.An“ingredient-target-disease”network was constructed to visualize these interactions.Molecular docking was utilized to assess the binding affinity between key ingredients and their respective targets.Additionally,MDS were conducted to analyze the stability of these complexes,providing robust evidence for further clinical applications and in-depth research.Results:Through network pharmacology analysis,we identified 99 active drug components,934 gene targets,and 1463 disease targets associated with DXR.Protein-protein interaction analysis revealed central regulatory nodes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these components primarily modulate processes such as inflammatory response and transcription factor activation,and are closely linked to the AGERAGE signaling pathway,lipid metabolism,and atherosclerosis pathways.Molecular docking confirmed strong binding potential between the components and their targets,while MDS further validated the stability of these interactions.Conclusion:This study elucidates that the active ingredients in DXR alleviate AS by mitigating inflammatory responses and inhibiting pyroptosis through the suppression of inflammatory factor release.These findings provide a scientific foundation for the clinical application of DXR in AS treatment.
文摘Objective:To predict the nephrotoxicity mechanism of Lianqiao-4 through network pharmacology and molecular docking methods.Methods:The main chemical components of Lianqiao(Forsythia suspensa),Bistortae rhizoma,Ophiopogonis radix,and Clematidis radix et rhizoma,as well as nephrotoxicity-related targets,were screened through databases such as TCMSP,Swiss Target Prediction,GeneCards,and ETCM.Venny 2.1.0 was used to identify the main components of Lianqiao-4 and nephrotoxicity targets.The STRING platform and David database were utilized to construct a protein-protein interaction(PPI)network diagram,while gene function(GO)enrichment analysis and KEGG pathway analysis were conducted.The“Lianqiao-4 active ingredients-nephrotoxicity targets-signaling pathways”network model was constructed using Cytoscape 3.9.1 software.Results:Network pharmacology and molecular docking analysis revealed that the core active ingredients responsible for the nephrotoxicity mechanism of Mongolian medicine Lianqiao-4 include steroidal saponins such as ophiopogonin A,flavonoids like kaempferol and quercetin,steroidal compounds such asβ-sitosterol and sitosterol,and other key regulatory targets including STAT3,ABCG2,HSP90AA1,MMP9,PTGS2,and EGFR.Major pathways involved include lipid and atherosclerosis,chemical carcinogenesis-DNA adducts,and arachidonic acid metabolism.Conclusion:Mongolian medicine Lianqiao-4 exerts its therapeutic effect on nephrotoxicity through multiple components,targets,and pathways,pending experimental verification.
基金Supported by the National Natural Science Foundation of China:Mechanism of Danggui Buxue Decoction in Promoting Liver Regulation by Modulating Kupffer Cell Glycolysis-Mediated Histone Lactylation in Hepatocytes(No.82474299)XingLin Scholars Program of Chengdu University of Traditional Chinese Medicine:Study on the Role and Mechanism of Electrospun Astragalus Polysaccharide and Angelica Polysaccharide in Promoting Liver Regeneration(No.YYZX2020036)。
文摘OBJECTIVE:To explore the mechanism of Danggui Buxue decoction(当归补血汤,DBD)for the treatment of gastric ulcer(GU),based on network pharmacology and in vivo experiments.METHODS:A network pharmacology strategy was used to predict the main components,candidate targets,and potential signaling pathways.Then,molecular docking was performed to further investigate the interactions and binding affinities between the main components and primary targets.Finally,a mouse model of ethanolinduced gastric ulcers was established to confirm the efficacy and potential therapeutic benefits of DBD,and candidate targets were finally identified.RESULTS:A total of 22 active components and 220 target genes were found to be associated with DBD.In addition,343 GU-related target genes and 57 target genes specific to DBD treatment of GU were identified.The Gene Ontology functional enrichment analysis revealed 510 entries for biological processes,36 entries for cell composition,and 69 entries for molecular functions.In the pathway enrichment analysis,143 signaling pathways were identified.Additionally,the molecular docking results revealed that the main active components of DBD exhibited a strong binding capacity with key proteins,including tumor necrosis factor,AKT serine/threonine kinase 1,interleukin-6,vascular endothelial growth factor,and interleukin-1 Beta.Among these,quercetin,kaempferol,formononetin,isorhamnetin,and beta-sitosterol displayed the strongest binding affinities for these key proteins.in vivo experiments showed that DBD pretreatment effectively protected gastric mucosa,and the benefits might be attributed to the downregulation of above key proteins.CONCLUSIONS:Based on network pharmacology analysis and in vivo experiments,we conclude that DBD leads to the protection and healing of the gastric mucosa by targeting genes and pathways,thus effectively countering the development and progression of GU.
基金supported by Henan Province 2024 Science and Technology Development Plan(242102310577).
文摘Objective This study aimed to investigate the potentialmechanism of Mahuang Xixin Fuzi Decoction in treating allergic rhinitis(AR)and predict its quality markers(Q-markers)using network pharmacology and molecular docking techniques.Methods The chemical components of the herbal constituents in Mahuang Xixin Fuzi Decoction were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP).Active component-related targets were screened using the SwissTargetPrediction database,while AR-related targets were obtained from the GeneCards database.The intersection targets(potential therapeutic targets of the Mahuang Xixin Fuzi Decoction for AR)were identified via the Venn 2.1.0 platform,and a Venn diagram was constructed.A“herb–active component–potential target”network was established using Cytoscape 3.10.0,and core components were screened via topological analysis.Protein–protein interaction(PPI)network of the intersection targets was built using the String database,followed by topological analysis to identify core targets.Gene Ontology(GO)enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis were performed on the core targets using the DAVID database.Molecular docking of core components and targets was conducted using AutoDock Tools 1.5.7.Results Twenty-seven active components were identified from TCMSP,with 506 corresponding targets predicted by SwissTargetPrediction.A total of 2,447 AR-related targets were retrieved from GeneCards,yielding 165 intersection targets.Network analysis revealed naringenin,genkwanin,deoxyandrographolide,karakoline,and karanjin as core components.PPI network analysis identified 32 core targets.GO enrichment analysis screened 834 functional items,including 618 biological processes,72 cellular components,and 144 molecular functions.KEGG analysis identified 165 signaling pathways.Molecular docking confirmed stable binding between core components and key targets.Conclusion Multiple chemical components in Mahuang Xixin Fuzi Decoction may ameliorate AR by regulating diverse targets and biological processes.Naringenin,genkwanin,and deoxyandrographolide are proposed as potential Q-markers for this decoction in AR treatment.
基金supported by Scientific Research Fund Project of Education Department of Liaoning Province(LJKZ0960)Science Foundation of Shenyang Pharmaceutical University(GGJJ2021105)National College Student Innovation and Entrepreneurship Project.
文摘KangBingDuKouFuYe(KBDKFY)is widely used to treat influenza,upper respiratory tract infections,mumps and other diseases.Due to their diverse active ingredients,it is believed that they may have excellent anti-inflammatory,antibacterial and antiviral effects.Therefore,we believe they may have multiple therapeutic targets for throat inflammation caused by bacterial or viral infections.This study utilizes network pharmacology methods to analyze the therapeutic effects of KBDKFY on Bacterial Pharyngeal Tonsillitis and Viral Pharyngitis,aiming to identify its active ingredients,action targets and related pathways through molecular docking.Additionally,it determines the affinity between the main active ingredient and the core target before conducting in vitro bacteriostatic tests.The analysis results show that KBDKFY contains multiple active ingredients and potential targets for treating Bacterial Pharyngeal Tonsillitis and Viral Pharyngitis.KEGG enrichment analysis indicates that KBDKFY may have therapeutic effects on these conditions through pathways such as pathways in cancer,Kaposi sarcoma-associated herpesvirus infection,PI3K-Akt signaling pathway,and others.This provides a theoretical basis for further exploring pharmacological effects and clinical applications of KBDKFY.
基金supported by National Natural Science Foundation of China(No.82374333,No.82173961)LiaoNing Revitalization Talents Program(XLYC2203200)+5 种基金SPU Excellent Youth Program(YQ202310)SPU Youth Career Development plan(ZQN202211)Key Laboratory of polysaccharide bioactivity evaluation of TCM of Liaoning Province-Liaoning Distinguished Professor Project for Ying Jia(2017)High-level innovation and entrepreneurship team of Liaoning Province(XLYC2008029)Liaoning Provincial Department of Education Fund(LJ212410163006,LJ212410163018)Postgraduate Education and Teaching Reform Research Project of Liaoning Province in 2024(LNYJG2024251).
文摘This study aims to explore the mechanism by which flavonoids in Crataegus pinnatifida fruit improve Alzheimer’s disease(AD)through network pharmacology and molecular docking technology.The flavonoid components present in Crataegus pinnatifida fruit were gathered from the HERB,HIT,and ETCM databases,and were further supplemented by relevant published literature.The PubChem and SwissTargetPrediction databases were utilized to predict potential targets,and a“Crataegus pinnatifida fruit-active ingredient-target”network was constructed using Cytoscape 3.9.0 software.The GeneCards database was utilized to identify targets associated with AD,which were subsequently intersected with the active targets of Crataegus pinnatifi da fruit.A protein-protein interaction(PPI)network was constructed using the STRING platform.KEGG enrichment analysis of the core targets was conducted on an online bioinformatics mapping platform,while molecular docking of the primary active components and core targets was executed using AutoDock software.Eight flavonoids and 160 potential targets were identifi ed from Crataegus pinnatifi da fruit,of which 147 targets were linked to AD.The results of the“Crataegus pinnatifi da fruit-active ingredient-target”network indicated that quercetin was the principal flavonoid active ingredient.PPI analysis revealed that SRC and EGFR were the key targets,and KEGG analysis identifi ed the main enrichment pathways as Pathways in cancer,PI3K/Akt signaling pathway,and Proteoglycans in cancer.Molecular docking confi rmed the strong binding affi nity between the core targets and the primary active ingredient.The interaction of quercetin with the key targets SRC and EGFR may represent a signifi cant mechanism by which flavonoids from Crataegus pinnatifi da fruit contribute to the improvement of AD.