期刊文献+
共找到659篇文章
< 1 2 33 >
每页显示 20 50 100
探索非零位置约束:算法-硬件协同设计的DNN稀疏训练方法
1
作者 王淼 张盛兵 张萌 《西北工业大学学报》 北大核心 2025年第1期119-127,共9页
设备上的学习使得边缘设备能连续适应人工智能应用的新数据。利用稀疏性消除训练过程中的冗余计算和存储占用是提高边缘深度神经网络(deep neural network,DNN)学习效率的关键途径。然而由于缺乏对非零位置的假设,往往需要昂贵的代价用... 设备上的学习使得边缘设备能连续适应人工智能应用的新数据。利用稀疏性消除训练过程中的冗余计算和存储占用是提高边缘深度神经网络(deep neural network,DNN)学习效率的关键途径。然而由于缺乏对非零位置的假设,往往需要昂贵的代价用于实时地识别和分配零的位置以及对不规则计算的负载均衡,这使得现有稀疏训练工作难以接近理想加速比。如果能提前预知训练过程中操作数的非零位置约束规则,就可以跳过这些处理开销,从而提升稀疏训练性能和能效比。针对稀疏训练过程,面向边缘场景中典型的3类激活函数探索操作数之间的位置约束规则,提出:①一个硬件友好的稀疏训练算法以减少3个阶段的计算量和存储压力;②一个高能效的稀疏训练加速器,能预估非零位置使得实时处理代价被并行执行掩盖。实验表明所提出的方法比密集加速器和2个其他稀疏训练工作的能效比分别提升了2.2倍,1.38倍和1.46倍。 展开更多
关键词 稀疏训练 非零位置约束 dnn 稀疏加速器
在线阅读 下载PDF
基于加权聚类和DNN的KR法脱硫剂加入量预报模型 被引量:1
2
作者 李威 熊凌 +3 位作者 罗钟邱 吴经纬 万诗斐 但斌斌 《炼钢》 北大核心 2025年第1期12-18,44,共8页
为了准确预测铁水KR脱硫工序中的脱硫剂加入量,提出了一种基于密度的聚类方法(DBSCAN)和深度神经网络(DNN)相结合的建模方法。首先计算Spearman相关系数筛选出与脱硫剂加入量相关性较强的6个输入特征;基于筛选后的特征,利用DNN对数据集... 为了准确预测铁水KR脱硫工序中的脱硫剂加入量,提出了一种基于密度的聚类方法(DBSCAN)和深度神经网络(DNN)相结合的建模方法。首先计算Spearman相关系数筛选出与脱硫剂加入量相关性较强的6个输入特征;基于筛选后的特征,利用DNN对数据集建立脱硫剂加入量预测模型;通过SHapley Additive exPlanations(SHAP)方法解释DNN模型,计算出各个特征对模型输出的贡献程度,根据得到的权重代入DBSCAN聚类算法中对某炼钢厂的脱硫实际生产数据进行聚类,保留清洗后的数据集;最后,通过五折交叉验证的方法对比了数据清洗前后的支持向量回归(SVR)、随机森林(RF)、极限梯度提升(XGBoost)、BP神经网络、深度神经网络(DNN)的预测模型性能。试验结果表明,使用清洗后的数据集建立的脱硫剂加入量预测模型的均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))较原数据集平均提高了33.6%、15.5%、12.9%、6.9%。 展开更多
关键词 KR脱硫 SHAP DBSCAN聚类 dnn 预测模型
原文传递
NoC加速器中的高效DNN动态切片与智能映射算法
3
作者 齐芸 欧阳一鸣 《电信科学》 北大核心 2025年第10期151-160,共10页
针对深度神经网络(deep neural network,DNN)模型在传统切片与映射方法中存在的资源调度和数据传输瓶颈问题,提出了一种基于片上网络(network on chip,NoC)加速器的高效DNN动态切片与智能映射优化算法。该算法通过动态切片技术灵活划分... 针对深度神经网络(deep neural network,DNN)模型在传统切片与映射方法中存在的资源调度和数据传输瓶颈问题,提出了一种基于片上网络(network on chip,NoC)加速器的高效DNN动态切片与智能映射优化算法。该算法通过动态切片技术灵活划分DNN模型的计算任务,并结合智能映射策略优化NoC架构中的任务分配与数据流管理。实验结果表明,与传统方法相比,该算法在计算吞吐量、NoC传输时延、外部内存访问次数和计算能效等方面均显著提升,尤其在复杂模型上表现突出。 展开更多
关键词 NoC加速器 dnn切片 智能映射
在线阅读 下载PDF
基于改进MFCC特征提取和DNN网络的机器人语音识别方法研究 被引量:2
4
作者 秦垲忻 王炜昕 王砚生 《计算机测量与控制》 2025年第2期246-253,共8页
为了实现机器人语音控制,并避免环境噪音的干扰,研究提出了基于改进MFCC特征提取和深度神经网络的机器人语音控制指令识别方法;该方法利用线性判别分析、最大似然线性变换和说话人自适应变换对MFCC特征进行处理,获得了新的语音特征;同... 为了实现机器人语音控制,并避免环境噪音的干扰,研究提出了基于改进MFCC特征提取和深度神经网络的机器人语音控制指令识别方法;该方法利用线性判别分析、最大似然线性变换和说话人自适应变换对MFCC特征进行处理,获得了新的语音特征;同时通过深度玻尔兹曼机对声学模型进行了改进,并利用深度神经网络和谐波增强技术构建了语音增强方法;实验结果显示,研究提出的基于改进Mel频率倒谱系数特征能显著降低语音识别的字错误率,通过辅以改进深度神经网络-隐马尔科夫模型能进一步降低字错误率;在20 dB条件下,该特征和改进深度神经网络-隐马尔科夫模型的平均字错误率分别为24.9%和22.1%,均低于其他方法;上述结果表明,研究提出的语音识别方法能实现带噪声语音的准确识别,提高机器人的语音控制指令识别能力。 展开更多
关键词 语音识别 语音增强 声学模型 MFCC特征 dnn
在线阅读 下载PDF
5G定制DNN就近接入实现方案研究
5
作者 林朝辉 张小勇 +1 位作者 张欣 平军磊 《邮电设计技术》 2025年第4期77-80,共4页
随着5G技术的快速发展和广泛应用,网络服务的个性化和定制化需求日益增长,车企对定制DNN的就近接入需求已成为5G行业应用的重要研究方向之一。基于5G核心网络技术特性,结合当前网络设备实际部署情况,对5G网络下定制DNN就近接入技术的实... 随着5G技术的快速发展和广泛应用,网络服务的个性化和定制化需求日益增长,车企对定制DNN的就近接入需求已成为5G行业应用的重要研究方向之一。基于5G核心网络技术特性,结合当前网络设备实际部署情况,对5G网络下定制DNN就近接入技术的实现方案进行研究。 展开更多
关键词 5G dnn 就近接入 AM-PCF
在线阅读 下载PDF
基于DNN-GRU-SVM的深度学习组合模型的网络入侵检测方法
6
作者 刘虎鹏 颜辉 +5 位作者 于萍 许晓晴 龙蕴鑫 耿晓中 龙多 赵禺 《电脑与信息技术》 2025年第4期64-70,共7页
针对现代大数据环境中网络入侵检测系统(network intrusion detection system,NIDS)难以应对复杂网络攻击的问题,提出了一种基于深度神经网络(Deep Neural Network,DNN)-门控循环单元(Gated Recurrent Unit,GRU)-支持向量机(Support Vec... 针对现代大数据环境中网络入侵检测系统(network intrusion detection system,NIDS)难以应对复杂网络攻击的问题,提出了一种基于深度神经网络(Deep Neural Network,DNN)-门控循环单元(Gated Recurrent Unit,GRU)-支持向量机(Support Vector Machine,SVM)的组合模型DNN-GRU-SVM。该模型结合了DNN、GRU与SVM的优势,首先利用DNN提取网络数据特征,通过调整学习率与批量归一化来加速训练并减少过拟合;采用GRU捕捉序列数据中的时间依赖性;通过SVM实现精确分类。在KDD Cup'99数据集上的实验表明,DNNGRU-SVM组合模型取得了显著的性能提升,其检测准确率达94.53%,精确度为99.8%,召回率为92.8%,F1分数为96.2%,显著优于传统机器学习算法及单一的深度神经网络。实验结果表明,该模型能够有效提高网络入侵检测的准确率和适应性,为复杂网络环境下的入侵检测提供了可靠的解决方案。 展开更多
关键词 网络入侵检测 机器学习 深度学习 dnn-GRU-SVM
在线阅读 下载PDF
改进DDPG的端边DNN协同推理策略
7
作者 和涛 栗娟 《计算机工程与应用》 北大核心 2025年第2期304-315,共12页
当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性... 当前基于端边的深度神经网络(deep neural network,DNN)协同推理策略仅关注于优化时延敏感型任务的推理时延,而未考虑能耗敏感型任务的推理能耗成本,以及DNN划分后在异构边缘服务器之间的高效卸载问题。基于此,提出一种改进深度确定性策略梯度(deep deterministic policy gradients,DDPG)的端边DNN协同推理策略,综合考虑任务对时延与能耗的敏感度,进而对推理成本进行综合优化。该策略将DNN划分与计算卸载问题分离,对不同协同设备建立预测模型,去预测出协同推理DNN的最优划分点与推理综合成本;根据预测的推理综合成本建立奖励函数,使用DDPG算法制定每个DNN推理任务的卸载策略,进而进行协同推理。实验结果证明,相比其他DNN协同推理策略,该策略在复杂的DNN协同推理环境下决策更高效,推理时延平均减少了46%,推理能耗平均减少了44%,推理综合成本平均降低了46%。 展开更多
关键词 边缘智能 深度神经网络(dnn) 协同推理 深度确定性策略梯度 任务卸载 能耗优化
在线阅读 下载PDF
Active Protection Scheme of DNN Intellectual Property Rights Based on Feature Layer Selection and Hyperchaotic Mapping
8
作者 Xintao Duan Yinhang Wu +1 位作者 Zhao Wang Chuan Qin 《Computers, Materials & Continua》 2025年第9期4887-4906,共20页
Deep neural network(DNN)models have achieved remarkable performance across diverse tasks,leading to widespread commercial adoption.However,training high-accuracy models demands extensive data,substantial computational... Deep neural network(DNN)models have achieved remarkable performance across diverse tasks,leading to widespread commercial adoption.However,training high-accuracy models demands extensive data,substantial computational resources,and significant time investment,making them valuable assets vulnerable to unauthorized exploitation.To address this issue,this paper proposes an intellectual property(IP)protection framework for DNN models based on feature layer selection and hyper-chaotic mapping.Firstly,a sensitivity-based importance evaluation algorithm is used to identify the key feature layers for encryption,effectively protecting the core components of the model.Next,the L1 regularization criterion is applied to further select high-weight features that significantly impact the model’s performance,ensuring that the encryption process minimizes performance loss.Finally,a dual-layer encryption mechanism is designed,introducing perturbations into the weight values and utilizing hyperchaotic mapping to disrupt channel information,further enhancing the model’s security.Experimental results demonstrate that encrypting only a small subset of parameters effectively reduces model accuracy to random-guessing levels while ensuring full recoverability.The scheme exhibits strong robustness against model pruning and fine-tuning attacks and maintains consistent performance across multiple datasets,providing an efficient and practical solution for authorization-based DNN IP protection. 展开更多
关键词 dnn IP protection active authorization control model weight selection hyperchaotic mapping model pruning
在线阅读 下载PDF
基于POD-DNN降阶模型的油浸式变压器绕组稳态温升快速计算方法
9
作者 赵庆贤 刘云鹏 +3 位作者 刘刚 傅榕韵 邹莹 武卫革 《中国电机工程学报》 北大核心 2025年第6期2423-2436,I0033,共15页
为解决油浸式变压器绕组稳态温升计算耗时久的问题,该文提出一种基于POD-DNN降阶模型的快速计算方法。首先,通过绕组稳态温升全阶模型构建快照矩阵,并基于本征正交分解(proper orthogonal decomposition,POD)获得物理系统的模态及模态... 为解决油浸式变压器绕组稳态温升计算耗时久的问题,该文提出一种基于POD-DNN降阶模型的快速计算方法。首先,通过绕组稳态温升全阶模型构建快照矩阵,并基于本征正交分解(proper orthogonal decomposition,POD)获得物理系统的模态及模态系数。然后,建立工况参数与模态系数间的深度神经网络(deep neural networks,DNN)代理模型,解决POD方法中非线性项求解效率低和控制方程依赖强的局限,同时设计网络正则化策略,避免小样本下模型过拟合。最后,将DNN代理模型预测的模态系数与对应的POD模态线性加权,重构绕组温度场。经验证,POD-DNN求解的绕组温升结果与Fluent仿真和试验测量高度一致,计算效率相较于全阶模型和Fluent仿真分别提升了247478倍和23056倍,该算法能够为变压器的在线监测、运行维护和绝缘设计提供技术支撑。 展开更多
关键词 本征正交分解 深度神经网络 绕组稳态温升 快速计算 降阶模型
原文传递
基于MAHAKIL与AM-DNN的煤层识别方法
10
作者 马晓易 段中钰 《北京信息科技大学学报(自然科学版)》 2025年第2期93-98,共6页
针对煤层识别中数据不平衡导致的精度下降问题,提出一种基于过采样算法MAHAKIL的融合注意力机制(attention mechanism,AM)的深度神经网络(deep neural network,DNN)模型MAHAKIL-AM-DNN。首先,使用改进的MAHAKIL算法生成具有多样性的合... 针对煤层识别中数据不平衡导致的精度下降问题,提出一种基于过采样算法MAHAKIL的融合注意力机制(attention mechanism,AM)的深度神经网络(deep neural network,DNN)模型MAHAKIL-AM-DNN。首先,使用改进的MAHAKIL算法生成具有多样性的合成样本;然后,使用注意力机制强化关键特征权重,优化深度神经网络的识别能力。实验结果表明,相较于不使用过采样技术的DNN方法以及使用合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)的SMOTE-DNN方法,该方法性能更优,F1值分别提高了58.5和4.8百分点,提升了煤层识别精度。 展开更多
关键词 煤层识别 遗传算法 过采样 注意力机制 深度神经网络
在线阅读 下载PDF
基于DNN的煤矿富水区探测反演方法研究 被引量:1
11
作者 韩晓冰 王鑫磊 +1 位作者 周远国 刘洋 《煤炭技术》 CAS 2024年第4期140-145,共6页
提出了一种基于DNN的煤矿富水区探测反演算法,该算法可以快速准确地实现煤矿富水区二维分布模型的重建。首先,利用时域有限差分方法(FDTD)获得不同分布模型的数值解;随后,依据数据样本搭建网络框架,网络的输入主要为电场分量,输出为相... 提出了一种基于DNN的煤矿富水区探测反演算法,该算法可以快速准确地实现煤矿富水区二维分布模型的重建。首先,利用时域有限差分方法(FDTD)获得不同分布模型的数值解;随后,依据数据样本搭建网络框架,网络的输入主要为电场分量,输出为相应的模型电导率参数。通过对神经网络进行训练,得到网络的最优系数,随后对富水区分布进行反演预测;结果表明:DNN算法在单个小目标异常体反演中,可以有效克服BP神经网络模型失效的问题,且对于多目标异常体的反演效果更加准确。另外,相同数据集下,DNN的训练耗时与预测耗时也少于BP神经网络。实验结果表明,该算法可以有效提高煤矿富水区探测效率。 展开更多
关键词 煤矿富水区探测 二维反演 dnn 时域有限差分法
原文传递
Collaborative non-chain DNN inference with multi-device based on layer parallel
12
作者 Qiuping Zhang Sheng Sun +4 位作者 Junjie Luo Min Liu Zhongcheng Li Huan Yang Yuwei Wang 《Digital Communications and Networks》 CSCD 2024年第6期1748-1759,共12页
Various intelligent applications based on non-chain DNN models are widely used in Internet of Things(IoT)scenarios.However,resource-constrained Io T devices usually cannot afford the heavy computation burden and canno... Various intelligent applications based on non-chain DNN models are widely used in Internet of Things(IoT)scenarios.However,resource-constrained Io T devices usually cannot afford the heavy computation burden and cannot guarantee the strict inference latency requirements of non-chain DNN models.Multi-device collaboration has become a promising paradigm for achieving inference acceleration.However,existing works neglect the possibility of inter-layer parallel execution,which fails to exploit the parallelism of collaborating devices and inevitably prolongs the overall completion latency.Thus,there is an urgent need to pay attention to the issue of non-chain DNN inference acceleration with multi-device collaboration based on inter-layer parallel.Three major challenges to be overcome in this problem include exponential computational complexity,complicated layer dependencies,and intractable execution location selection.To this end,we propose a Topological Sorting Based Bidirectional Search(TSBS)algorithm that can adaptively partition non-chain DNN models and select suitable execution locations at layer granularity.More specifically,the TSBS algorithm consists of a topological sorting subalgorithm to realize parallel execution with low computational complexity under complicated layer parallel constraints,and a bidirectional search subalgorithm to quickly find the suitable execution locations for non-parallel layers.Extensive experiments show that the TSBS algorithm significantly outperforms the state-of-the-arts in the completion latency of non-chain DNN inference,a reduction of up to 22.69%. 展开更多
关键词 Collaborative dnn inference Multi-device collaboration Non-chain dnn model
在线阅读 下载PDF
基于DNN-LSTM模型的智能家居语音识别系统设计 被引量:2
13
作者 林勇升 田美艳 王鑫 《安阳师范学院学报》 2024年第5期15-18,共4页
为提高智能家居语言识别系统的准确率和匹配率,通过在深度神经网络(DNN)模型的第1层增加长短时记忆神经网络(LSTM)结构,运用信息熵实现对声学训练与语种匹配,设计了基于DNN-LSTM模型的语音识别系统。将该系统应用于语音识别,结果表明系... 为提高智能家居语言识别系统的准确率和匹配率,通过在深度神经网络(DNN)模型的第1层增加长短时记忆神经网络(LSTM)结构,运用信息熵实现对声学训练与语种匹配,设计了基于DNN-LSTM模型的语音识别系统。将该系统应用于语音识别,结果表明系统的中英文声学模型识别准确率为96.6%,语种匹配准确率为95.8%。该系统对提升智能家居的智能化水平具有一定的实用价值。 展开更多
关键词 语音识别 dnn-LSTM模型 智能家居
在线阅读 下载PDF
基于XGBoost-DNN的工业控制系统入侵检测架构 被引量:5
14
作者 张子迎 陈玉炜 王宇华 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第11期2243-2249,共7页
针对工业控制系统安全防护中存在的数据不平衡问题以及提高检测的实时性与安全性,本文依据工业控制系统的架构特点,提出XGBoost-DNN双层入侵检测架构。在下层,将设计的权重焦点损失函数引入XGBoost中进行二分类入侵检测,以增强算法在不... 针对工业控制系统安全防护中存在的数据不平衡问题以及提高检测的实时性与安全性,本文依据工业控制系统的架构特点,提出XGBoost-DNN双层入侵检测架构。在下层,将设计的权重焦点损失函数引入XGBoost中进行二分类入侵检测,以增强算法在不平衡数据下的鲁棒性;在上层,使用XGBoost算法进行特征选择,然后用DNN对结果进行多分类入侵检测。将该架构应用在电网稳定性和电网攻击模拟数据集上,实验结果表明:双层检测架构具有更强的鲁棒性,并且DNN模型的训练时间缩短了18.3%。 展开更多
关键词 工业控制系统 入侵检测 XGBoost dnn 分层架构 权重焦点损失函数 实时性 不平衡数据
在线阅读 下载PDF
基于多实例和DNN的桩基承载力与沉降预测模型构建 被引量:3
15
作者 陈振宇 《办公自动化》 2024年第9期90-92,共3页
在大型工业厂房、交通桥梁、高层建筑等城建工程中,桩基础应用非常普遍,桩基承载力与沉降直接影响城建工程桩基的安全性与可靠性。基于深度神经网络(DNN)的桩基承载力与沉降预测对提升桩基施工安全性具有重要意义。依托湛江组黏土中桩... 在大型工业厂房、交通桥梁、高层建筑等城建工程中,桩基础应用非常普遍,桩基承载力与沉降直接影响城建工程桩基的安全性与可靠性。基于深度神经网络(DNN)的桩基承载力与沉降预测对提升桩基施工安全性具有重要意义。依托湛江组黏土中桩基承载力与沉降时效性模型试验实例,结合DNN构建桩基承载力与沉降预测模型,经过对数据样本的预处理、网络结构的设计、神经网络的训练等,探究该预测模型对桩基极限承载力与沉降的预测效果。整体上,该模型的预测效果能满足要求,建议增加训练样本提升沉降时效性预测效果。 展开更多
关键词 工程实例 dnn 桩基承载力 沉降 预测模型
在线阅读 下载PDF
基于多DNN的5G双域专网模式的研究与应用 被引量:2
16
作者 饶亮 《长江信息通信》 2024年第5期172-174,共3页
随着5G ToB网络的不断演进,基于ULCL(上行分流器)的双域专网越来越被市场特别是高校类客户所接受,其最大的亮点是数据不出园区,用户不用更换终端和手机卡便可以同时使用公网和内网,兼顾了内网数据保密性和使用公网的便捷性,但是目前大... 随着5G ToB网络的不断演进,基于ULCL(上行分流器)的双域专网越来越被市场特别是高校类客户所接受,其最大的亮点是数据不出园区,用户不用更换终端和手机卡便可以同时使用公网和内网,兼顾了内网数据保密性和使用公网的便捷性,但是目前大部分的基于ULCL双域专网方案是基于单DNN的模式,漫游场景下时延较高,时延敏感型体验较差;核心网业务数据配置复杂。对此,文章介绍了一种基于多DNN的双域专网模式,进一步提升用户的感知,并通过实际案例验证了方案的可行性。 展开更多
关键词 dnn ULCL 双域专网
在线阅读 下载PDF
基于Sentinel数据与DNN算法的衡水市土壤墒情遥感反演研究 被引量:1
17
作者 贾璐 《水利科学与寒区工程》 2024年第9期19-22,共4页
利用Sentinel-1 SAR和Sentinel-2 MSI数据与深度神经网络(DNN)算法,实现衡水市土壤墒情的遥感反演。结果表明,所提取的遥感指数能够准确捕捉地表环境特征;DNN算法通过构建样点尺度土壤墒情与遥感指数之间非线性关系,稳健预测空间尺度土... 利用Sentinel-1 SAR和Sentinel-2 MSI数据与深度神经网络(DNN)算法,实现衡水市土壤墒情的遥感反演。结果表明,所提取的遥感指数能够准确捕捉地表环境特征;DNN算法通过构建样点尺度土壤墒情与遥感指数之间非线性关系,稳健预测空间尺度土壤墒情分布。独立验证结果显示,土壤墒情反演精度R2达0.854,MAE和RMSE分别为0.05、0.06。本试验证明基于Sentinel数据与DNN算法的土壤墒情遥感反演方法,在墒情监测与预测方面具有较高的精度和可靠性。 展开更多
关键词 土壤墒情 Sentinel-1 SAR Sentinel-2 MSI 遥感反演 dnn算法
在线阅读 下载PDF
IGED:Towards Intelligent DDoS Detection Model Using Improved Generalized Entropy and DNN
18
作者 Yanhua Liu Yuting Han +3 位作者 HuiChen Baokang Zhao XiaofengWang Ximeng Liu 《Computers, Materials & Continua》 SCIE EI 2024年第8期1851-1866,共16页
As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved general... As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved generalized entropy and deep neural network(DNN).The initial detection is based on improved generalized entropy to filter out as much normal traffic as possible,thereby reducing data volume.Then the fine detection is based on DNN to perform precise DDoS detection on the filtered suspicious traffic,enhancing the neural network’s generalization capabilities.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method reaches 99.9%on low-rate DDoS(LDDoS),flooded DDoS and CICDDoS2019 datasets in terms of both accuracy and efficiency in identifying attack flows while reducing the time by 17%,31%and 8%. 展开更多
关键词 DDOS REAL-TIME improved generalized entropy dnn
在线阅读 下载PDF
Energy-optimal DNN model placement in UAV-enabled edge computing networks
19
作者 Jianhang Tang Guoquan Wu +3 位作者 Mohammad Mussadiq Jalalzai Lin Wang Bing Zhang Yi Zhou 《Digital Communications and Networks》 SCIE CSCD 2024年第4期827-836,共10页
Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible ... Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible UAVs,massive sensing data is gathered and processed promptly without considering geographical locations.Deep neural networks(DNNs)are becoming a driving force to extract valuable information from sensing data.However,the lightweight servers installed on UAVs are not able to meet the extremely high requirements of inference tasks due to the limited battery capacities of UAVs.In this work,we investigate a DNN model placement problem for AIoT applications,where the trained DNN models are selected and placed on UAVs to execute inference tasks locally.It is impractical to obtain future DNN model request profiles and system operation states in UAV-enabled edge computing.The Lyapunov optimization technique is leveraged for the proposed DNN model placement problem.Based on the observed system overview,an advanced online placement(AOP)algorithm is developed to solve the transformed problem in each time slot,which can reduce DNN model transmission delay and disk I/O energy cost simultaneously while keeping the input data queues stable.Finally,extensive simulations are provided to depict the effectiveness of the AOP algorithm.The numerical results demonstrate that the AOP algorithm can reduce 18.14%of the model placement cost and 29.89%of the input data queue backlog on average by comparing it with benchmark algorithms. 展开更多
关键词 UAV-Enabled edge computing dnn model Placement 6G networks Inference tasks
在线阅读 下载PDF
基于改进DNN网络的电装产线质量预测方法
20
作者 许政 阮西玥 《航空计算技术》 2024年第4期125-129,134,共6页
随着航空机载电装模块功能多元化、尺寸精细化、器件复杂化程度的不断提升,对SMT产线电装质量提出了新的挑战,目前SMT产线生产过程普遍存在产品质检数据关联性较差,产品质量分析滞后及预测性差等问题,而传统的统计分析方法无法有效提取... 随着航空机载电装模块功能多元化、尺寸精细化、器件复杂化程度的不断提升,对SMT产线电装质量提出了新的挑战,目前SMT产线生产过程普遍存在产品质检数据关联性较差,产品质量分析滞后及预测性差等问题,而传统的统计分析方法无法有效提取海量无序数据中的知识和规律,提出一种基于深度学习的电装质量预测方法。首先,构建质量评价方法,确定电装质量的影响因素;其次,利用主成分分析法(Principal Components Analysis,PCA)对质量数据进行预处理,剔除非相关特征;然后,引入DNN网络,构建电装质量预测模型,利用BFO-PSO优化算法搜寻网络的最优隐含层层数及节点数;最后,通过航空电装产线实际制造数据进行仿真测试,验证了所提出方法的有效性和科学性。 展开更多
关键词 SMT产线 电装质量预测 BFO-PSO优化算法 dnn网络 智能制造
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部