Microporous organic polymers with high surface area are widely used in many applications.Among them,hypercrosslinked polymers have been extensively concerned because of their simple processes and low-cost reagents.How...Microporous organic polymers with high surface area are widely used in many applications.Among them,hypercrosslinked polymers have been extensively concerned because of their simple processes and low-cost reagents.However,due to most state-of-the-art strategies for HCPs based on condensation reactions,the release of small molecules such as hydrochloric acid and methanol involved in such strategies brings about new hazards to environment.Herein,we propose a method of fabrication of hypercrosslinked polymers via self-addition polymerization of divinyl benzene and its crosslinking with polar aromatic molecules.The hypercrosslinked polyDVB-based products are demonstrated by FriedelCrafts addition reaction of double bonds on DVB that can connect adjacent phenyl rings of aromatic molecules to form the crosslinked networks.The HCPDVB-CB obtained in 1-chlorobutane as solvent has a high micropore content and displays high surface area up to 931 m^(2)/g.Following this finding,DVB is used as a novel external crosslinker for knitting polar aromatic molecules.When L-phenylalanine and bisphenol A are used as the aromatic units,the obtained HCP(Phe-DVB)and HCP(BPA-DVB)could reach surface area of 612 and 471 m^(2)/g,and have hydrogen uptake of0.62 wt%and 0.58 wt%at 77 K and 1.13 bar by comparison with HCPDVB-CB having hydrogen uptake of 0.30 wt%,respectively.展开更多
Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization,...Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The synthesized PVGD and IPVGD resins were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. The cation-exchange capacity, the water uptake and the indium adsorption properties were investigated. The cation-exchange capacities of PVGD and IPVGD were 1.2 - 4.5 meq/g and 2.5 - 6.4 meq/g, respectively. The water uptakes were decreased with increasing contents of divinyl benzene (DVB). The water uptake values were 25% - 40% and 20% - 35%, respectively. The optimum adsorption of indium from a pure indium solution and an artificial indium tin oxide (ITO) solution by the PVGD and IPVGD ion-exchange resins were 2.3 and 3.5 meq/g, respectively. The indium adsorption capacities of IPVGD were higher than those of PVGD. The indium ion adsorption selectivity in the artificial ITO solution by PVGD and IPVGD was excellent, and other ions were adsorbed only slightly.展开更多
The new approach for synthesis of hyperbranched polymers from commercially available A2 and BB'2 type monomers was extended to synthesize hyperbranched copolymers. In this work, hyperbranched copoly(sulfone-amine)...The new approach for synthesis of hyperbranched polymers from commercially available A2 and BB'2 type monomers was extended to synthesize hyperbranched copolymers. In this work, hyperbranched copoly(sulfone-amine) was prepared by copolymerization of divinyl sulfone (A2) with 4,4'-trimethylenedipiperidine (B2) and N-ethylethylenediamine (BB'2). During the reaction,secondary-amino groups of B2 and BB'2 monomers react rapidly with vinyl groups of A2 monomers within 35 s, generating a type of intermediate containing one vinyl group and two reactive hydrogen atoms. Now the intermediates can be regarded as a new BB2 type monomer, whichfurther polymerizes to form hyperbranched copoly(sulfone-amine). The polymerization mechanism was investigated with FTIR and LC-MSD. The degree of branching (DB) of hyperbranched copolymers increased with decreasing the ratio of 4, 4'-trimethylenedipiperidine to N-ethylethylenediamine, so DB can be controlled. When the initial mole ratio of B2 to BB2 was equal to or higher than four, r≥4, resulted copolymers were semi-crystalline, while copolymers with r<3 were amorphous.展开更多
Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based por...Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis.展开更多
基金National Key R&D Program of China(No.2017YFC1600404)Natural Science Foundation of Shandong Province(No.ZR2013BM011)+1 种基金supported by Open Projects Fund of Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology,Shandong University(No.2019CCG02)Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials,and Science and Technology Bureau of Jinan(No.2021GXRC105)。
文摘Microporous organic polymers with high surface area are widely used in many applications.Among them,hypercrosslinked polymers have been extensively concerned because of their simple processes and low-cost reagents.However,due to most state-of-the-art strategies for HCPs based on condensation reactions,the release of small molecules such as hydrochloric acid and methanol involved in such strategies brings about new hazards to environment.Herein,we propose a method of fabrication of hypercrosslinked polymers via self-addition polymerization of divinyl benzene and its crosslinking with polar aromatic molecules.The hypercrosslinked polyDVB-based products are demonstrated by FriedelCrafts addition reaction of double bonds on DVB that can connect adjacent phenyl rings of aromatic molecules to form the crosslinked networks.The HCPDVB-CB obtained in 1-chlorobutane as solvent has a high micropore content and displays high surface area up to 931 m^(2)/g.Following this finding,DVB is used as a novel external crosslinker for knitting polar aromatic molecules.When L-phenylalanine and bisphenol A are used as the aromatic units,the obtained HCP(Phe-DVB)and HCP(BPA-DVB)could reach surface area of 612 and 471 m^(2)/g,and have hydrogen uptake of0.62 wt%and 0.58 wt%at 77 K and 1.13 bar by comparison with HCPDVB-CB having hydrogen uptake of 0.30 wt%,respectively.
文摘Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The synthesized PVGD and IPVGD resins were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. The cation-exchange capacity, the water uptake and the indium adsorption properties were investigated. The cation-exchange capacities of PVGD and IPVGD were 1.2 - 4.5 meq/g and 2.5 - 6.4 meq/g, respectively. The water uptakes were decreased with increasing contents of divinyl benzene (DVB). The water uptake values were 25% - 40% and 20% - 35%, respectively. The optimum adsorption of indium from a pure indium solution and an artificial indium tin oxide (ITO) solution by the PVGD and IPVGD ion-exchange resins were 2.3 and 3.5 meq/g, respectively. The indium adsorption capacities of IPVGD were higher than those of PVGD. The indium ion adsorption selectivity in the artificial ITO solution by PVGD and IPVGD was excellent, and other ions were adsorbed only slightly.
基金the National Natural Science Foundation of China (Grant No. 29974017).
文摘The new approach for synthesis of hyperbranched polymers from commercially available A2 and BB'2 type monomers was extended to synthesize hyperbranched copolymers. In this work, hyperbranched copoly(sulfone-amine) was prepared by copolymerization of divinyl sulfone (A2) with 4,4'-trimethylenedipiperidine (B2) and N-ethylethylenediamine (BB'2). During the reaction,secondary-amino groups of B2 and BB'2 monomers react rapidly with vinyl groups of A2 monomers within 35 s, generating a type of intermediate containing one vinyl group and two reactive hydrogen atoms. Now the intermediates can be regarded as a new BB2 type monomer, whichfurther polymerizes to form hyperbranched copoly(sulfone-amine). The polymerization mechanism was investigated with FTIR and LC-MSD. The degree of branching (DB) of hyperbranched copolymers increased with decreasing the ratio of 4, 4'-trimethylenedipiperidine to N-ethylethylenediamine, so DB can be controlled. When the initial mole ratio of B2 to BB2 was equal to or higher than four, r≥4, resulted copolymers were semi-crystalline, while copolymers with r<3 were amorphous.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020400)~~
文摘Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis.