Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This p...Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This phenomenon has a significant impact on water flow patterns and basin extents,serving as an indicator of the landscape's response to active tectonic forces.One of the key drivers of divide migration is asymmetric uplift,which causes divides to shift from areas of lower uplift to regions experiencing higher uplift.Drainage divides are inherently dynamic,evolving over time as drainage networks develop and adjust to changing conditions.This study focuses on the migration of the main drainage divide along Karιncalιda?,located between Bozdo?an and Karacasu.It employs geomorphic analyses using metrics such as the normalized steepness index(ksn),Chi(χ),and Gilbert metrics.The main divide is categorized into four segments(D1–D4),with the Karacasu Fault,situated along the mountain's north-eastern boundary,identified as the primary factor influencing divide dynamics.Secondary factors include the relatively low elevation of Karιncalιda?,uniform lithology,and consistent rainfall patterns across the region.The results indicate that the main divide is currently stable,suggesting a balance between uplift and erosion.However,higherχvalues in the D4 segment suggest that future erosion may dominate,potentially causing the divide to migrate toward the Bozdo?an Basin.These findings highlight the dynamic nature of drainage divides and the complex interplay of tectonic,erosional,and lithological processes that shape their evolution.Continued monitoring and advanced geomorphic analysis are essential for understanding the long-term stability of the divide and its response to future tectonic activity and erosional modifications.展开更多
Understanding the evolution of the fluvial geomorphology in an orogenic belt provides valuable insight into the relationship between upper crustal deformation and surface processes.The upper Lancang-Mekong River is in...Understanding the evolution of the fluvial geomorphology in an orogenic belt provides valuable insight into the relationship between upper crustal deformation and surface processes.The upper Lancang-Mekong River is in an area experiencing both uplift and erosion.The related processes provide a steady sediment supply to the lower reaches of the river and play an important role in the regional environmental changes.The Xiaohei(Weiyuan)River Basin is an important sub-basin in this area,which is characterized by large-scale topographic fluctuations,active tectonics and erosion,and anthropogenic activities.These different factors introduce numerous complexities to the local surface processes.In this study,we investigate and quantify the controls of geomorphic evolution of the Xiaohei River Basin.We located and mapped the main knick-zones within the channels and examined the main genetic factors,such as faults and stratigraphic differences.The results show that the areas with the lowest uplift rates are characterized by a low steepness index and are located in the southeastern part of the basin.The stream power of the mainstream increases downstream,with an average value of^122 W/m.The erosional activity of the various stream channels is intense.Overall,the basin tends to expansion,with only local instances of inward contraction.Our analysis confirms that a number of the geomorphic evolutionary characteristics of the Xiaohei River Basin are transient.In addition,the future potential for the increasing the number of dams and the hydropower development in the basin may weaken the expansion trend of the basin over a long period of time.展开更多
文摘Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This phenomenon has a significant impact on water flow patterns and basin extents,serving as an indicator of the landscape's response to active tectonic forces.One of the key drivers of divide migration is asymmetric uplift,which causes divides to shift from areas of lower uplift to regions experiencing higher uplift.Drainage divides are inherently dynamic,evolving over time as drainage networks develop and adjust to changing conditions.This study focuses on the migration of the main drainage divide along Karιncalιda?,located between Bozdo?an and Karacasu.It employs geomorphic analyses using metrics such as the normalized steepness index(ksn),Chi(χ),and Gilbert metrics.The main divide is categorized into four segments(D1–D4),with the Karacasu Fault,situated along the mountain's north-eastern boundary,identified as the primary factor influencing divide dynamics.Secondary factors include the relatively low elevation of Karιncalιda?,uniform lithology,and consistent rainfall patterns across the region.The results indicate that the main divide is currently stable,suggesting a balance between uplift and erosion.However,higherχvalues in the D4 segment suggest that future erosion may dominate,potentially causing the divide to migrate toward the Bozdo?an Basin.These findings highlight the dynamic nature of drainage divides and the complex interplay of tectonic,erosional,and lithological processes that shape their evolution.Continued monitoring and advanced geomorphic analysis are essential for understanding the long-term stability of the divide and its response to future tectonic activity and erosional modifications.
基金financially supported by the National Key Research and Development Program of China(No.2016YFA0601601)the National Science and Technology Support Program(No2013BAB06B03)the China Postdoctoral Science Foundation(No.2019M653506)
文摘Understanding the evolution of the fluvial geomorphology in an orogenic belt provides valuable insight into the relationship between upper crustal deformation and surface processes.The upper Lancang-Mekong River is in an area experiencing both uplift and erosion.The related processes provide a steady sediment supply to the lower reaches of the river and play an important role in the regional environmental changes.The Xiaohei(Weiyuan)River Basin is an important sub-basin in this area,which is characterized by large-scale topographic fluctuations,active tectonics and erosion,and anthropogenic activities.These different factors introduce numerous complexities to the local surface processes.In this study,we investigate and quantify the controls of geomorphic evolution of the Xiaohei River Basin.We located and mapped the main knick-zones within the channels and examined the main genetic factors,such as faults and stratigraphic differences.The results show that the areas with the lowest uplift rates are characterized by a low steepness index and are located in the southeastern part of the basin.The stream power of the mainstream increases downstream,with an average value of^122 W/m.The erosional activity of the various stream channels is intense.Overall,the basin tends to expansion,with only local instances of inward contraction.Our analysis confirms that a number of the geomorphic evolutionary characteristics of the Xiaohei River Basin are transient.In addition,the future potential for the increasing the number of dams and the hydropower development in the basin may weaken the expansion trend of the basin over a long period of time.