Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique ...Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.展开更多
基金supported by the National Key Resarch and Development Program of China(Grant No.2023YFD1200802)the Base Bank of Lingnan Rice Germplasm Resources Project,China(Grant No.2024B1212060009).
文摘Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.