期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Behaviors of Axially Moving Viscoelastic Plate with Varying Thickness 被引量:4
1
作者 ZHOU Yinfeng WANG Zhongmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期276-281,共6页
Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varyi... Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers. 展开更多
关键词 axially motion viscoelastic plate with varying thickness differential quadrature method divergent instability coupled-mode flutter
在线阅读 下载PDF
Mesoscale Modeling Study of Severe Convection over Complex Terrain 被引量:2
2
作者 Ying ZHANG Zhiyong MENG +2 位作者 Peijun ZHU Tao SU Guoqing ZHAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1259-1270,共12页
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis ... Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid–low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level(LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather. 展开更多
关键词 convective convection divergence mesoscale mountains instability southwestern terrain moved uplift
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部