This study investigates the removal of arsenite(As(III)) from water using dithionite activated by UV light. This work evaluated the removal kinetics of As(III) under UV light irradiation as affected by dithionit...This study investigates the removal of arsenite(As(III)) from water using dithionite activated by UV light. This work evaluated the removal kinetics of As(III) under UV light irradiation as affected by dithionite dose and light intensity, and characterized the nature of the precipitated solids using XPS and SEM-EDS. Photolysis of dithionite was observed by measuring dithionite concentration using UV absorbance at 315 nm. This study also investigated the effect of UV light path length on soluble As concentrations to understand resolubilization mechanisms. Total soluble As concentrations were observed to decrease with reaction time due to reduction of arsenite to form solids having a yellow-orange color.The removal mechanism was found to be reductive precipitation that formed solids of elemental arsenic or arsenic sulfide. However, these solids were observed to resolubilize at later times after dithionite had been consumed. Resolubilization of As was prevented and additional As removal was obtained by frequent dosing of dithionite throughout the experiment. As(III) removal is attributed to photolysis of dithionite by UV light and production of reactive radicals that reduce As(III) and convert it to solid forms.展开更多
The cheap and easily available sodium dithionite and thiourea dioxide have been used as the source of sulfonyl group in the synthesis of sulfones and sulfonamides recently.Compared with other methods for the sulfonyla...The cheap and easily available sodium dithionite and thiourea dioxide have been used as the source of sulfonyl group in the synthesis of sulfones and sulfonamides recently.Compared with other methods for the sulfonylation reactions,the strategies using sodium dithionite or thiourea dioxide provide an alternative and complementary route to diverse sulfonyl compounds.During the reaction process,sulfur dioxide anion radical is the key intermediate,which is usually generated from a single electron transfer under suitable conditions.The advantages using sodium dithionite or thiourea dioxide in the sulfonylation reactions include mild conditions and broad substrate scope with excellent functional group compatibility.Further applications by using sodium dithionite and thiourea dioxide in organic transformations will be anticipated.展开更多
The sulfinatodehalogenation reaction of α,α-difluorobenzyl handes, ArCF_2X (Ar = CAFS, C_6H_5; X = Br, I ), with sodium dithionite took place readily in aqueous acetonitrile under mild conditions. giving the corresp...The sulfinatodehalogenation reaction of α,α-difluorobenzyl handes, ArCF_2X (Ar = CAFS, C_6H_5; X = Br, I ), with sodium dithionite took place readily in aqueous acetonitrile under mild conditions. giving the corresponding sodium sulfinate. The 1: 1 adducts were obtained when alkenes were added to the reaction system in some cases.展开更多
Dicofol type DDTs-contamination is of great concern as environmental organochlorine pollutant. In the present study, dechlorination time-course ofp,p'-DDT and p,p'-DDE in dithionite treated waterlogged DDTs-contamin...Dicofol type DDTs-contamination is of great concern as environmental organochlorine pollutant. In the present study, dechlorination time-course ofp,p'-DDT and p,p'-DDE in dithionite treated waterlogged DDTs-contaminated soil, non-contaminated soil solution and citrate-bicarbonate buffer (0, 50, 100 mmol L^-1, dithionite) for 72 hrs was investigated based on residual amount of p,p'-DDTs (p,p'-DDT and p,p'-DDE) analyzed by GC-ECD. The metabolites ofp,p'-DDTs in dithionite treated non-contaminated soil solution, and citrate-bicarbonate buffer were detected by GC-MSD. The dechlorination time-course of p,p'-DDT and p,p'-DDE exhibited rapid dechlorination at the first 3.0 hrs, slow dechlorination after 3.0 hrs. For 50 mmol L^-1 dithionite treatments, the dechlorination ratios ofp,p'-DDT and p,p'-DDE were 36.42% and 35.08% respectively at 3.0 hrs. For 100 mmol L^-1 dithionite treatments, the dechlorination ratios of p,p'-DDT and p,p'-DDE were 58.62% and 57.39% respectively at 3.0 hrs in DDTs-contaminated soils. Significant differences of dechlorination ratio were also confirmed in dependence on dithionite concentrations, reaction systems and the chemical structure of DDTs. The dechlorination ratio ofp,p'-DDT/DDE increased with the increasing of dithionite concentrations irrespective of reaction systems. Dithionite-induced dechlorination ratio of p,p'-DDT was higher than that of p,p'-DDE. The p,p'-DDD (1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane), p,p'-DDE and p,p'-DDMU (1-chloro-2,2-bis(4-chloropheny)-ethylene) were identified to be metabolites ofp,p'-DDT in buffer and non-contaminated soil solution, however, no metabolites ofp,p'-DDE treated by dithionite were detected. The possible pathways explaining the dechlorination of p,p'-DDT and p,p'-DDE by dithionite were also proposed. Dithionite could be used to develop an effective and fast remediation option for DDTs-contaminated soils and sediments.展开更多
The study investigats the morphological, physical and chemical characteristic of a toposequence on basement complex in Ejioku area, south-western Nigeria on latitude 07°28.675'N;and longitude 004°07.219&...The study investigats the morphological, physical and chemical characteristic of a toposequence on basement complex in Ejioku area, south-western Nigeria on latitude 07°28.675'N;and longitude 004°07.219'E;180 m above sea level at the upper slope. It terminates at the valley bottom on latitude 07°28.756'N;and longitude 004°07.229'E;175 m above sea level. The topography of the site is moderately slope (not greater than 10%). The aim is to examine the two forms of sesquioxides (crystalline-dithionite extractible Fe & Al and amorphous-oxalate Fe & Al) and their distribution on the toposequence. The crystalline form of Fe oxide dominates all the positions and ranges from 7.2 g/kg at the valley bottom to 444.3 g/kg at the crest compared to the amorphous forms that range from 2.7 g/kg to 10.9 g/kg. The crystalline and amorphous aluminium oxide contents of the soils are low (2.9 g/kg - 43.3 g/kg and 1.3 g/kg - 8.7 g/kg respectively). There is significant negative relationship between Fed and Fed/Feo (r =-0.15;P n = 16). There is also a correlation between Feo and Ald (r = 0.63;P n = 16), FeO and FeO/Fed (r = 0.44;P n = 16), signifying a high level of weathering. The relatively high amount of Fed virtually at all the horizons indicates that the crystalline and less active forms of the oxides exist more on the landscape and may be responsible for the non-availability of some nutrient like phosphorus that may be sorbed to their crystals lattice. All forms of Al in the soils are low especially, the oxalate extractable forms, when compare with the dithionite extractable forms. However, there is a significant correlation between Ald and Feo/Fed (r = 0.57;P < 0.01). As a result of high accumulation of crystalline form of Fe and Al oxide with increasing depth, most especially, at the crest/upper slope, there is greater amount of concretions, nodules and plinthites which will lead to further deterioration of the soil for agricultural purposes.展开更多
基金possible by grants from the Qatar National Research Fund under its National Priorities Research Program award number NPRP 6-729-2-301 and NPRP 8-1406-2-605
文摘This study investigates the removal of arsenite(As(III)) from water using dithionite activated by UV light. This work evaluated the removal kinetics of As(III) under UV light irradiation as affected by dithionite dose and light intensity, and characterized the nature of the precipitated solids using XPS and SEM-EDS. Photolysis of dithionite was observed by measuring dithionite concentration using UV absorbance at 315 nm. This study also investigated the effect of UV light path length on soluble As concentrations to understand resolubilization mechanisms. Total soluble As concentrations were observed to decrease with reaction time due to reduction of arsenite to form solids having a yellow-orange color.The removal mechanism was found to be reductive precipitation that formed solids of elemental arsenic or arsenic sulfide. However, these solids were observed to resolubilize at later times after dithionite had been consumed. Resolubilization of As was prevented and additional As removal was obtained by frequent dosing of dithionite throughout the experiment. As(III) removal is attributed to photolysis of dithionite by UV light and production of reactive radicals that reduce As(III) and convert it to solid forms.
基金Financial support from the National Natural Science Foundation of China(Nos.21871053 and 21532001)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2019R01005)is gratefully acknowledged。
文摘The cheap and easily available sodium dithionite and thiourea dioxide have been used as the source of sulfonyl group in the synthesis of sulfones and sulfonamides recently.Compared with other methods for the sulfonylation reactions,the strategies using sodium dithionite or thiourea dioxide provide an alternative and complementary route to diverse sulfonyl compounds.During the reaction process,sulfur dioxide anion radical is the key intermediate,which is usually generated from a single electron transfer under suitable conditions.The advantages using sodium dithionite or thiourea dioxide in the sulfonylation reactions include mild conditions and broad substrate scope with excellent functional group compatibility.Further applications by using sodium dithionite and thiourea dioxide in organic transformations will be anticipated.
基金the National Natural Science Foundation of China ! 29772041.29632003
文摘The sulfinatodehalogenation reaction of α,α-difluorobenzyl handes, ArCF_2X (Ar = CAFS, C_6H_5; X = Br, I ), with sodium dithionite took place readily in aqueous acetonitrile under mild conditions. giving the corresponding sodium sulfinate. The 1: 1 adducts were obtained when alkenes were added to the reaction system in some cases.
基金Acknowledgments This research was jointly supported by National Science Foundation of China (No. 20777092), the ministry of Science and Technology of China (2007CB407304) and Natural science foundation of Zhejiang province of China (Y307025).
文摘Dicofol type DDTs-contamination is of great concern as environmental organochlorine pollutant. In the present study, dechlorination time-course ofp,p'-DDT and p,p'-DDE in dithionite treated waterlogged DDTs-contaminated soil, non-contaminated soil solution and citrate-bicarbonate buffer (0, 50, 100 mmol L^-1, dithionite) for 72 hrs was investigated based on residual amount of p,p'-DDTs (p,p'-DDT and p,p'-DDE) analyzed by GC-ECD. The metabolites ofp,p'-DDTs in dithionite treated non-contaminated soil solution, and citrate-bicarbonate buffer were detected by GC-MSD. The dechlorination time-course of p,p'-DDT and p,p'-DDE exhibited rapid dechlorination at the first 3.0 hrs, slow dechlorination after 3.0 hrs. For 50 mmol L^-1 dithionite treatments, the dechlorination ratios ofp,p'-DDT and p,p'-DDE were 36.42% and 35.08% respectively at 3.0 hrs. For 100 mmol L^-1 dithionite treatments, the dechlorination ratios of p,p'-DDT and p,p'-DDE were 58.62% and 57.39% respectively at 3.0 hrs in DDTs-contaminated soils. Significant differences of dechlorination ratio were also confirmed in dependence on dithionite concentrations, reaction systems and the chemical structure of DDTs. The dechlorination ratio ofp,p'-DDT/DDE increased with the increasing of dithionite concentrations irrespective of reaction systems. Dithionite-induced dechlorination ratio of p,p'-DDT was higher than that of p,p'-DDE. The p,p'-DDD (1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane), p,p'-DDE and p,p'-DDMU (1-chloro-2,2-bis(4-chloropheny)-ethylene) were identified to be metabolites ofp,p'-DDT in buffer and non-contaminated soil solution, however, no metabolites ofp,p'-DDE treated by dithionite were detected. The possible pathways explaining the dechlorination of p,p'-DDT and p,p'-DDE by dithionite were also proposed. Dithionite could be used to develop an effective and fast remediation option for DDTs-contaminated soils and sediments.
文摘The study investigats the morphological, physical and chemical characteristic of a toposequence on basement complex in Ejioku area, south-western Nigeria on latitude 07°28.675'N;and longitude 004°07.219'E;180 m above sea level at the upper slope. It terminates at the valley bottom on latitude 07°28.756'N;and longitude 004°07.229'E;175 m above sea level. The topography of the site is moderately slope (not greater than 10%). The aim is to examine the two forms of sesquioxides (crystalline-dithionite extractible Fe & Al and amorphous-oxalate Fe & Al) and their distribution on the toposequence. The crystalline form of Fe oxide dominates all the positions and ranges from 7.2 g/kg at the valley bottom to 444.3 g/kg at the crest compared to the amorphous forms that range from 2.7 g/kg to 10.9 g/kg. The crystalline and amorphous aluminium oxide contents of the soils are low (2.9 g/kg - 43.3 g/kg and 1.3 g/kg - 8.7 g/kg respectively). There is significant negative relationship between Fed and Fed/Feo (r =-0.15;P n = 16). There is also a correlation between Feo and Ald (r = 0.63;P n = 16), FeO and FeO/Fed (r = 0.44;P n = 16), signifying a high level of weathering. The relatively high amount of Fed virtually at all the horizons indicates that the crystalline and less active forms of the oxides exist more on the landscape and may be responsible for the non-availability of some nutrient like phosphorus that may be sorbed to their crystals lattice. All forms of Al in the soils are low especially, the oxalate extractable forms, when compare with the dithionite extractable forms. However, there is a significant correlation between Ald and Feo/Fed (r = 0.57;P < 0.01). As a result of high accumulation of crystalline form of Fe and Al oxide with increasing depth, most especially, at the crest/upper slope, there is greater amount of concretions, nodules and plinthites which will lead to further deterioration of the soil for agricultural purposes.