The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa...An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.展开更多
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi...The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.展开更多
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol...This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.展开更多
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA...In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MG...Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MGs. This paper proposes a distributedco-optimization method for peer-to-peer (P2P) energy trading and network operation for an ADN integrated with multiple microgrids(MMGs). A framework that optimizes P2P energy trading among MMGs and ADN operations was first established. Subsequently, anenergy management model that aims to minimize the operation and energy trading costs was constructed for each MG. Accordingly, theMMGs’ cooperative game model was established based on Nash bargaining theory to incentivize each stakeholder to participate in P2Penergy trading, and a distributed solution method based on the alternating direction method of multipliers was developed. Moreover, analgorithm that adjusts the amount of energy trading between the ADN and MG is proposed to ensure safe operation of the distributionnetwork. With the communication between the MG and ADN, the MMGs’ P2P trading and ADN operations are optimized in a coordinated manner. Finally, numerical simulations were conducted to verify the accuracy and effectiveness of the proposed method.展开更多
P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods base...P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions.展开更多
In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy informa...In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy information leakage.This poses a great challenge to conventional privacy protection mechanisms(CPPM).The existing data partitioning methods ignore the number of data replications and information exchanges,resulting in complex distance calculations and inefficient indexing for high-dimensional data.Therefore,CPPM often fails to meet the stringent requirements of efficiency and reliability,especially in dynamic spatiotemporal environments.Addressing this concern,we proposed the Principal Component Enhanced Vantage-point tree(PEV-Tree),which is an enhanced data structure based on the idea of dimension reduction,and constructed a Distributed Spatio-Temporal Privacy Preservation Mechanism(DST-PPM)on it.In this work,principal component analysis and the vantage tree are used to establish the PEV-Tree.In addition,we designed three distributed anonymization algorithms for data streams.These algorithms are named CK-AA,CL-DA,and CT-CA,fulfill the anonymization rules of K-Anonymity,L-Diversity,and T-Closeness,respectively,which have different computational complexities and reliabilities.The higher the complexity,the lower the risk of privacy leakage.DST-PPM can reduce the dimension of high-dimensional information while preserving data characteristics and dividing the data space into vantage points based on distance.It effectively enhances the data processing workflow and increases algorithmefficiency.To verify the validity of the method in this paper,we conducted empirical tests of CK-AA,CL-DA,and CT-CA on conventional datasets and the PEV-Tree,respectively.Based on the big data background of the Internet of Vehicles,we conducted experiments using artificial simulated on-board network data.The results demonstrated that the operational efficiency of the CK-AA,CL-DA,and CT-CA is enhanced by 15.12%,24.55%,and 52.74%,respectively,when deployed on the PEV-Tree.Simultaneously,during homogeneity attacks,the probabilities of information leakage were reduced by 2.31%,1.76%,and 0.19%,respectively.Furthermore,these algorithms showcased superior utility(scalability)when executed across PEV-Trees of varying scales in comparison to their performance on conventional data structures.It indicates that DST-PPM offers marked advantages over CPPM in terms of efficiency,reliability,and scalability.展开更多
A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a...A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.展开更多
A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging s...A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging states of the electric vehicles are represented by the zero-one variables with more flexibility.To solve the nonconvex optimization problem of the users,a novel neurodynamic algorithm which combines the neural network algorithm with the differential evolution algorithm is designed and its convergence speed is faster.A distributed algorithm with a new approach to deal with the inequality constraints is used to solve the convex optimization problem of the generators which can protect their privacy.Simulation results and comparative experiments show that the model and algorithms are effective.展开更多
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble...The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in w...This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.展开更多
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral...In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic a...Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.展开更多
In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling pro...In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints,where multiple reticles are available for each reticle type.First,the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time.Second,estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints.Third,an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally,simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.展开更多
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.
基金supported in part by Sichuan Science and Technology Program under Grant No.2025ZNSFSC151in part by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA27030201+1 种基金the Natural Science Foundation of China under Grant No.U21B6001in part by the Natural Science Foundation of Tianjin under Grant No.24JCQNJC01930.
文摘The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241A-1-1-ZN).
文摘This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.
基金The National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks Program(grant number SGNR0000KJJS2302139).
文摘Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MGs. This paper proposes a distributedco-optimization method for peer-to-peer (P2P) energy trading and network operation for an ADN integrated with multiple microgrids(MMGs). A framework that optimizes P2P energy trading among MMGs and ADN operations was first established. Subsequently, anenergy management model that aims to minimize the operation and energy trading costs was constructed for each MG. Accordingly, theMMGs’ cooperative game model was established based on Nash bargaining theory to incentivize each stakeholder to participate in P2Penergy trading, and a distributed solution method based on the alternating direction method of multipliers was developed. Moreover, analgorithm that adjusts the amount of energy trading between the ADN and MG is proposed to ensure safe operation of the distributionnetwork. With the communication between the MG and ADN, the MMGs’ P2P trading and ADN operations are optimized in a coordinated manner. Finally, numerical simulations were conducted to verify the accuracy and effectiveness of the proposed method.
文摘P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions.
基金supported by the Natural Science Foundation of Sichuan Province(No.2024NSFSC1450)the Fundamental Research Funds for the Central Universities(No.SCU2024D012)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129).
文摘In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy information leakage.This poses a great challenge to conventional privacy protection mechanisms(CPPM).The existing data partitioning methods ignore the number of data replications and information exchanges,resulting in complex distance calculations and inefficient indexing for high-dimensional data.Therefore,CPPM often fails to meet the stringent requirements of efficiency and reliability,especially in dynamic spatiotemporal environments.Addressing this concern,we proposed the Principal Component Enhanced Vantage-point tree(PEV-Tree),which is an enhanced data structure based on the idea of dimension reduction,and constructed a Distributed Spatio-Temporal Privacy Preservation Mechanism(DST-PPM)on it.In this work,principal component analysis and the vantage tree are used to establish the PEV-Tree.In addition,we designed three distributed anonymization algorithms for data streams.These algorithms are named CK-AA,CL-DA,and CT-CA,fulfill the anonymization rules of K-Anonymity,L-Diversity,and T-Closeness,respectively,which have different computational complexities and reliabilities.The higher the complexity,the lower the risk of privacy leakage.DST-PPM can reduce the dimension of high-dimensional information while preserving data characteristics and dividing the data space into vantage points based on distance.It effectively enhances the data processing workflow and increases algorithmefficiency.To verify the validity of the method in this paper,we conducted empirical tests of CK-AA,CL-DA,and CT-CA on conventional datasets and the PEV-Tree,respectively.Based on the big data background of the Internet of Vehicles,we conducted experiments using artificial simulated on-board network data.The results demonstrated that the operational efficiency of the CK-AA,CL-DA,and CT-CA is enhanced by 15.12%,24.55%,and 52.74%,respectively,when deployed on the PEV-Tree.Simultaneously,during homogeneity attacks,the probabilities of information leakage were reduced by 2.31%,1.76%,and 0.19%,respectively.Furthermore,these algorithms showcased superior utility(scalability)when executed across PEV-Trees of varying scales in comparison to their performance on conventional data structures.It indicates that DST-PPM offers marked advantages over CPPM in terms of efficiency,reliability,and scalability.
基金co-supported by the National Natural Science Foundation of China(Nos.61273349 and 61175109)the Aeronautical Science Foundation of China(Nos.2014ZA18004 and 2013ZA18001)
文摘A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.
基金the Natural Science Foundation of China(61773320)the Central Universities(XDJK2020TY003)the Natural Science Foundation Project of Chongqing Science and Technology Commission(cstc2018jcyjAX0583)。
文摘A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging states of the electric vehicles are represented by the zero-one variables with more flexibility.To solve the nonconvex optimization problem of the users,a novel neurodynamic algorithm which combines the neural network algorithm with the differential evolution algorithm is designed and its convergence speed is faster.A distributed algorithm with a new approach to deal with the inequality constraints is used to solve the convex optimization problem of the generators which can protect their privacy.Simulation results and comparative experiments show that the model and algorithms are effective.
基金supported by the National Natural Science Foundation of China(61201370)the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province(2012CX30202)the Natural Science Foundation of Shandong Province(ZR2014FM039)
文摘The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
文摘This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.
基金Project(2009CB320603)supported by the National Basic Research Program of ChinaProject(IRT0712)supported by Program for Changjiang Scholars and Innovative Research Team in University+1 种基金Project(B504)supported by the Shanghai Leading Academic Discipline ProgramProject(61174118)supported by the National Natural Science Foundation of China
文摘In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金This project was supported by the High Technology Research and Development Programme of China (2002AA111040).
文摘Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.
基金Supported by the National High Technology Research and Development Programme of China(No.2009AA043000)the National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints,where multiple reticles are available for each reticle type.First,the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time.Second,estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints.Third,an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally,simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.