In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently in...In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently intermittent output of renewable generation,distort the zero-sequence current and continuously reshape its frequency spectrum.As a result,single-line-to-ground(SLG)faults exhibit a pronounced,strongly non-stationary behaviour that varies with operating point,load mix and DER dispatch.Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply,and they no longer satisfy the accuracy and universality required by practical protection systems.To overcome these shortcomings,the present study develops an SLG-fault identification scheme that transforms the zero-sequence currentwaveforminto two-dimensional image representations and processes themwith a convolutional neural network(CNN).First,the causes of sample-distribution imbalance are analysed in detail by considering different neutralgrounding configurations,fault-inception mechanisms and the statistical probability of fault occurrence on each phase.Building on these insights,a discriminator network incorporating a Convolutional Block Attention Module(CBAM)is designed to autonomously extract multi-layer spatial-spectral features,while Gradient-weighted Class Activation Mapping(Grad-CAM)is employed to visualise the contribution of every salient image region,thereby enhancing interpretability.A comprehensive simulation platform is subsequently established for a DER-rich distribution system encompassing several representative topologies,feeder lengths and DER penetration levels.Large numbers of realistic SLG-fault scenarios are generated—including noise and measurement uncertainty—and are used to train,validate and test the proposed model.Extensive simulation campaigns,corroborated by field measurements from an actual utility network,demonstrate that the proposed approach attains an SLG-fault identification accuracy approaching 100 percent and maintains robust performance under severe noise conditions,confirming its suitability for real-world engineering applications.展开更多
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa...This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.展开更多
Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive ...Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive research,existing approaches often face algorithmic limitations such as slow convergence,premature stagnation in local minima,or suboptimal accuracy in determining optimal DG placement and capacity.This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement.It integrates both quantitative and qualitative analyses of the scholarly landscape,mapping influential research domains,co-authorship structures,the articles’citation networks,keyword clusters,and international collaboration patterns.Moreover,the study classifies and evaluates the most prominent objective functions,key computational models and optimization algorithms,DG technologies,and strategic approaches employed in the field.The findings reveal that advanced algorithmic frameworks substantially enhance network stability,minimize real power losses,and improve voltage profiles under various operational constraints.This review serves as a foundational resource for researchers and practitioners,highlighting emerging algorithmic trends,modelling innovations,and data-driven methodologies that can guide future development of intelligent,optimization-based DG integration strategies in smart distribution systems.展开更多
Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quali...Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quality in the power distribution system.Researchers have considered the use of distributed generation resources in recent years.There are numerous advantages to utilizing these resources,the most significant of which are the reduction of network losses and enhancement of voltage stability.Non-dominated Sorting Genetic Algorithm II(NSGA-II),Multi-Objective Particle Swarm Optimization(MOPSO),and Intersect Mutation Differential Evolution(IMDE)algorithms are used in this paper to perform optimal reconfiguration,simultaneous location,and capacity determination of distributed generation resources and capacitor banks.Three scenarios were used to replicate the studies.The reconfiguration of the switches,as well as the location and determination of the capacitor bank’s optimal capacity,were investigated in this scenario.However,in the third scenario,reconfiguration,and determining the location and capacity of the Distributed Generation(DG)resources and capacitor banks have been carried out simultaneously.Finally,the simulation results of these three algorithms are compared.The results indicate that the proposed NSGAII algorithm outperformed the other two multi-objective algorithms and was capable of maintaining smaller objective functions in all scenarios.Specifically,the energy losses were reduced from 211 to 51.35 kW(a 75.66%reduction),119.13 kW(a 43.54%reduction),and 23.13 kW(an 89.04%reduction),while the voltage stability index(VSI)decreased from 6.96 to 2.105,1.239,and 1.257,respectively,demonstrating significant improvement in the voltage profile.展开更多
The literature on multi-attribute optimization for renewable energy source(RES)placement in deregulated power markets is extensive and diverse in methodology.This study focuses on the most relevant publications direct...The literature on multi-attribute optimization for renewable energy source(RES)placement in deregulated power markets is extensive and diverse in methodology.This study focuses on the most relevant publications directly addressing the research problem at hand.Similarly,while the body of work on optimal location and sizing of renewable energy generators(REGs)in balanced distribution systems is substantial,only the most pertinent sources are cited,aligning closely with the study’s objective function.A comprehensive literature review reveals several key research areas:RES integration,RES-related optimization techniques,strategic placement of wind and solar generation,and RES promotion in deregulated powermarkets,particularly within transmission systems.Furthermore,the optimal location and sizing of REGs in both balanced and unbalanced distribution systems have been extensively studied.RESs demonstrate significant potential for standalone applications in remote areas lacking conventional transmission and distribution infrastructure.Also presents a thorough review of current modeling and optimization approaches for RES-based distribution system location and sizing.Additionally,it examines the optimal positioning,sizing,and performance of hybrid and standalone renewable energy systems.This paper provides a comprehensive review of current modeling and optimization approaches for the location and sizing of Renewable Energy Sources(RESs)in distribution systems,focusing on both balanced and unbalanced networks.展开更多
With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FD...With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FDN),the calculation of carbon flow distribution in FDN is more difficult.To this end,this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow(CEF).First,the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed.Subsequently,a model for optimizing low-carbon operations within FDNs is formulated based on the refined CEF,which merges the specificities of DG and intelligent SOP.Finally,this model is scrutinized using an upgraded IEEE 33-node distribution system,a comparative analysis of the cases reveals that when DG and SOP are operated in a coordinated manner in the FDN,with the cost of electricity generation was reduced by 40.63 percent and the cost of carbon emissions by 10.18 percent.The findings indicate that the judicious optimization of areas exhibiting higher carbon flow rates can effectively enhance the economic efficiency of DN operations and curtail the carbon emissions of the overall network.展开更多
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
The major aim of power quality(PQ) enhancing techniques is to maintain a specified voltage magnitude at a desired frequency for sensitive loads irrespective of faults on the power distribution network.The dynamic volt...The major aim of power quality(PQ) enhancing techniques is to maintain a specified voltage magnitude at a desired frequency for sensitive loads irrespective of faults on the power distribution network.The dynamic voltage restorer(DVR) is a device used to mitigate voltage sags to regulate load voltage.This paper presents a mathematical model for leading series voltage injection to mitigate sags thereby achieving the improvement of the utility power factor as well as power sharing between the DVR and utility.The power sharing will be as per requirement to compensate the sags considering the available distributed generation(DG).The approach of mitigating voltage sags using the concept of leading series voltage injection is suitable for those locations where phase shift in the voltage will not cause any problem.The MATLAB/SIMULINK SimPowerSystem toolbox has been used to obtain simulation results to verify the proposed mathematical model.展开更多
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab...A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.展开更多
In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration pr...In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared.展开更多
This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units d...This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.展开更多
This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is use...This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.展开更多
The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects...The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects on the overall system operating characteristics and stability. The use of a stable power station (with high speed machines) will be critical in achieving fast and reliable transient response to network events, in particular, when large transient loads are expected on a continuous basis, i.e., industrial mining and mineral processing equipment. Simulation results of this paper assist in understanding how small power stations and wind generation equipment respond to large transients in an islanded network. In particular, detailed simulations and analyses will be presented on impacts of distributed wind generation units (1.5 MW DF1G) on the stability of a small weak network. The novelty of this paper is on detailed analyses and simulation of weak networks with interconnects DFIG's including their impacts on system stability under various transient operating conditions.展开更多
A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current an...A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.展开更多
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of cha...Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.展开更多
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ...This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.展开更多
基金supported by the Science and Technology Program of China Southern Power Grid(031800KC23120003).
文摘In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources(DERs),the harmonic components injected by power-electronic interfacing converters,together with the inherently intermittent output of renewable generation,distort the zero-sequence current and continuously reshape its frequency spectrum.As a result,single-line-to-ground(SLG)faults exhibit a pronounced,strongly non-stationary behaviour that varies with operating point,load mix and DER dispatch.Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply,and they no longer satisfy the accuracy and universality required by practical protection systems.To overcome these shortcomings,the present study develops an SLG-fault identification scheme that transforms the zero-sequence currentwaveforminto two-dimensional image representations and processes themwith a convolutional neural network(CNN).First,the causes of sample-distribution imbalance are analysed in detail by considering different neutralgrounding configurations,fault-inception mechanisms and the statistical probability of fault occurrence on each phase.Building on these insights,a discriminator network incorporating a Convolutional Block Attention Module(CBAM)is designed to autonomously extract multi-layer spatial-spectral features,while Gradient-weighted Class Activation Mapping(Grad-CAM)is employed to visualise the contribution of every salient image region,thereby enhancing interpretability.A comprehensive simulation platform is subsequently established for a DER-rich distribution system encompassing several representative topologies,feeder lengths and DER penetration levels.Large numbers of realistic SLG-fault scenarios are generated—including noise and measurement uncertainty—and are used to train,validate and test the proposed model.Extensive simulation campaigns,corroborated by field measurements from an actual utility network,demonstrate that the proposed approach attains an SLG-fault identification accuracy approaching 100 percent and maintains robust performance under severe noise conditions,confirming its suitability for real-world engineering applications.
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
文摘This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number:IMSIU-DDRSP2503)。
文摘Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive research,existing approaches often face algorithmic limitations such as slow convergence,premature stagnation in local minima,or suboptimal accuracy in determining optimal DG placement and capacity.This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement.It integrates both quantitative and qualitative analyses of the scholarly landscape,mapping influential research domains,co-authorship structures,the articles’citation networks,keyword clusters,and international collaboration patterns.Moreover,the study classifies and evaluates the most prominent objective functions,key computational models and optimization algorithms,DG technologies,and strategic approaches employed in the field.The findings reveal that advanced algorithmic frameworks substantially enhance network stability,minimize real power losses,and improve voltage profiles under various operational constraints.This review serves as a foundational resource for researchers and practitioners,highlighting emerging algorithmic trends,modelling innovations,and data-driven methodologies that can guide future development of intelligent,optimization-based DG integration strategies in smart distribution systems.
文摘Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quality in the power distribution system.Researchers have considered the use of distributed generation resources in recent years.There are numerous advantages to utilizing these resources,the most significant of which are the reduction of network losses and enhancement of voltage stability.Non-dominated Sorting Genetic Algorithm II(NSGA-II),Multi-Objective Particle Swarm Optimization(MOPSO),and Intersect Mutation Differential Evolution(IMDE)algorithms are used in this paper to perform optimal reconfiguration,simultaneous location,and capacity determination of distributed generation resources and capacitor banks.Three scenarios were used to replicate the studies.The reconfiguration of the switches,as well as the location and determination of the capacitor bank’s optimal capacity,were investigated in this scenario.However,in the third scenario,reconfiguration,and determining the location and capacity of the Distributed Generation(DG)resources and capacitor banks have been carried out simultaneously.Finally,the simulation results of these three algorithms are compared.The results indicate that the proposed NSGAII algorithm outperformed the other two multi-objective algorithms and was capable of maintaining smaller objective functions in all scenarios.Specifically,the energy losses were reduced from 211 to 51.35 kW(a 75.66%reduction),119.13 kW(a 43.54%reduction),and 23.13 kW(an 89.04%reduction),while the voltage stability index(VSI)decreased from 6.96 to 2.105,1.239,and 1.257,respectively,demonstrating significant improvement in the voltage profile.
文摘The literature on multi-attribute optimization for renewable energy source(RES)placement in deregulated power markets is extensive and diverse in methodology.This study focuses on the most relevant publications directly addressing the research problem at hand.Similarly,while the body of work on optimal location and sizing of renewable energy generators(REGs)in balanced distribution systems is substantial,only the most pertinent sources are cited,aligning closely with the study’s objective function.A comprehensive literature review reveals several key research areas:RES integration,RES-related optimization techniques,strategic placement of wind and solar generation,and RES promotion in deregulated powermarkets,particularly within transmission systems.Furthermore,the optimal location and sizing of REGs in both balanced and unbalanced distribution systems have been extensively studied.RESs demonstrate significant potential for standalone applications in remote areas lacking conventional transmission and distribution infrastructure.Also presents a thorough review of current modeling and optimization approaches for RES-based distribution system location and sizing.Additionally,it examines the optimal positioning,sizing,and performance of hybrid and standalone renewable energy systems.This paper provides a comprehensive review of current modeling and optimization approaches for the location and sizing of Renewable Energy Sources(RESs)in distribution systems,focusing on both balanced and unbalanced networks.
基金supported in part by National Natural Science Foundation of China under Grant 52007026.
文摘With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FDN),the calculation of carbon flow distribution in FDN is more difficult.To this end,this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow(CEF).First,the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed.Subsequently,a model for optimizing low-carbon operations within FDNs is formulated based on the refined CEF,which merges the specificities of DG and intelligent SOP.Finally,this model is scrutinized using an upgraded IEEE 33-node distribution system,a comparative analysis of the cases reveals that when DG and SOP are operated in a coordinated manner in the FDN,with the cost of electricity generation was reduced by 40.63 percent and the cost of carbon emissions by 10.18 percent.The findings indicate that the judicious optimization of areas exhibiting higher carbon flow rates can effectively enhance the economic efficiency of DN operations and curtail the carbon emissions of the overall network.
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
基金Project(No. UET/ASR&TD-251/2006)supported by the Higher Education Commission of Pakistan
文摘The major aim of power quality(PQ) enhancing techniques is to maintain a specified voltage magnitude at a desired frequency for sensitive loads irrespective of faults on the power distribution network.The dynamic voltage restorer(DVR) is a device used to mitigate voltage sags to regulate load voltage.This paper presents a mathematical model for leading series voltage injection to mitigate sags thereby achieving the improvement of the utility power factor as well as power sharing between the DVR and utility.The power sharing will be as per requirement to compensate the sags considering the available distributed generation(DG).The approach of mitigating voltage sags using the concept of leading series voltage injection is suitable for those locations where phase shift in the voltage will not cause any problem.The MATLAB/SIMULINK SimPowerSystem toolbox has been used to obtain simulation results to verify the proposed mathematical model.
文摘A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults.
基金supported by The Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province(2018GGJS175:Research on Intelligent Power Management System).
文摘In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared.
文摘This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.
文摘This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.
文摘The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects on the overall system operating characteristics and stability. The use of a stable power station (with high speed machines) will be critical in achieving fast and reliable transient response to network events, in particular, when large transient loads are expected on a continuous basis, i.e., industrial mining and mineral processing equipment. Simulation results of this paper assist in understanding how small power stations and wind generation equipment respond to large transients in an islanded network. In particular, detailed simulations and analyses will be presented on impacts of distributed wind generation units (1.5 MW DF1G) on the stability of a small weak network. The novelty of this paper is on detailed analyses and simulation of weak networks with interconnects DFIG's including their impacts on system stability under various transient operating conditions.
文摘A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
基金supported by National Key R&D Program of ChinaunderGrant,(2021YFB2601403).
文摘Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.
文摘This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.