The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this pa...The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.展开更多
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa...An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.展开更多
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA...In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin...In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.展开更多
This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general he...This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.展开更多
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble...The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.展开更多
Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real t...Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter(EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.展开更多
This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in w...This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral...In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre...Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre-sent paper reports the chlorophyll data collected and primary productivity estimated there. Water sam-ples were taken with a glass bottle of Model HQMat the depth of 0, 10. 25, 50, 75, 100 and 150m, separately. Chlorophyll was determined according to the spectrophotometry proposed by UNESCO(1966) and calculated with the trichromatic equations of Jeffrey-Humphrey(1975). Estimations ofprimary productivity were carried out using a simplified equation (Q = 1.5) given by Cadee(1975).展开更多
In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling pro...In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints,where multiple reticles are available for each reticle type.First,the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time.Second,estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints.Third,an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally,simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.展开更多
Distribution estimation is very important in order to make statistical inference for parameters or its functions based on this distribution. In this work we propose an estimator of the distribution of some variable wi...Distribution estimation is very important in order to make statistical inference for parameters or its functions based on this distribution. In this work we propose an estimator of the distribution of some variable with non-smooth auxiliary information, for example, a symmetric distribution of this variable, A smoothing technique is employed to handle the non-differentiable function. Hence, a distribution can be estimated based on smoothed auxiliary information. Asymptotic properties of the distribution estimator are derived and analyzed. The distribution estimators based on our method are found to be significantly efficient than the corresponding estimators without these auxiliary information. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op...The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.展开更多
In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied envi...In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.展开更多
Previous studies have shown that the fatigue life distribution of metal materials fabricated with Additive Manufacturing(AM) methods, such as Direct Energy Deposited(DED) Ti-6.5Al-2Zr-1Mo-1V alloys, exhibits two peaks...Previous studies have shown that the fatigue life distribution of metal materials fabricated with Additive Manufacturing(AM) methods, such as Direct Energy Deposited(DED) Ti-6.5Al-2Zr-1Mo-1V alloys, exhibits two peaks. To promote the application of AM in aerospace and other engineering fields, developing a fatigue strength evaluation method suitable for AM materials based on their unique fatigue behaviours and fatigue life distributions is necessary. In this paper, a novel Detail Fatigue Rating(DFR) method was developed to evaluate the fatigue strength of DED Ti-6.5Al-2Zr-1Mo-1V based on a bimodal Weibull distribution and the excessive restriction on the allowable stress of potential was improved. Meanwhile, a Bimodal Weibull distribution model for fatigue life and its parameter estimation method were established based on a twoparameter Weibull distribution. The fatigue life at a specific reliability level and confidence level was calculated by using the bootstrap method. The calculation results showed that fatigue life estimated by using the bimodal Weibull distribution at the high reliability level and high confidence level is higher than that estimated by using the two-parameter Weibull distribution. Furthermore,The S-N curve at the specified confidence level and reliability level was fitted.展开更多
This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to ...This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.展开更多
文摘The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.
基金The National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
基金Supported by the National Basic Research Program of China (2012CB720500)the National Natural Science Foundation of China (60974008)
文摘In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.
文摘This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.
基金supported by the National Natural Science Foundation of China(61201370)the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province(2012CX30202)the Natural Science Foundation of Shandong Province(ZR2014FM039)
文摘The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
基金the Creative Research Groups Science Fund of the National Natural Science Foundation of China(No.50921002)
文摘Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter(EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.
文摘This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金Project(2009CB320603)supported by the National Basic Research Program of ChinaProject(IRT0712)supported by Program for Changjiang Scholars and Innovative Research Team in University+1 种基金Project(B504)supported by the Shanghai Leading Academic Discipline ProgramProject(61174118)supported by the National Natural Science Foundation of China
文摘In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre-sent paper reports the chlorophyll data collected and primary productivity estimated there. Water sam-ples were taken with a glass bottle of Model HQMat the depth of 0, 10. 25, 50, 75, 100 and 150m, separately. Chlorophyll was determined according to the spectrophotometry proposed by UNESCO(1966) and calculated with the trichromatic equations of Jeffrey-Humphrey(1975). Estimations ofprimary productivity were carried out using a simplified equation (Q = 1.5) given by Cadee(1975).
基金Supported by the National High Technology Research and Development Programme of China(No.2009AA043000)the National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints,where multiple reticles are available for each reticle type.First,the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time.Second,estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints.Third,an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally,simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Funds for Distinguished Young Scholar (No.70825004)National Natural Science Foundation of China (NSFC) (No.10731010)+3 种基金the National Basic Research Program (No.2007CB814902)Creative Research Groups of China (No.10721101)Shanghai University of Finance and Economics through Project 211 Phase ⅢShanghai Leading Academic Discipline Project,Project Number:B803
文摘Distribution estimation is very important in order to make statistical inference for parameters or its functions based on this distribution. In this work we propose an estimator of the distribution of some variable with non-smooth auxiliary information, for example, a symmetric distribution of this variable, A smoothing technique is employed to handle the non-differentiable function. Hence, a distribution can be estimated based on smoothed auxiliary information. Asymptotic properties of the distribution estimator are derived and analyzed. The distribution estimators based on our method are found to be significantly efficient than the corresponding estimators without these auxiliary information. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
文摘The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.
基金supported by the National Key Research and Development Program of China(No.2018AAA0102401)the National Natural Science Foundation of China(Nos.62022060,61773278,61873340).
文摘In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.
基金the support from the National Key Research and Development Program of China(No.2017YFB1104003)National Natural Science Foundation of China(No.11772027)Aeronautical Science Foundation of China(No.201909051002)。
文摘Previous studies have shown that the fatigue life distribution of metal materials fabricated with Additive Manufacturing(AM) methods, such as Direct Energy Deposited(DED) Ti-6.5Al-2Zr-1Mo-1V alloys, exhibits two peaks. To promote the application of AM in aerospace and other engineering fields, developing a fatigue strength evaluation method suitable for AM materials based on their unique fatigue behaviours and fatigue life distributions is necessary. In this paper, a novel Detail Fatigue Rating(DFR) method was developed to evaluate the fatigue strength of DED Ti-6.5Al-2Zr-1Mo-1V based on a bimodal Weibull distribution and the excessive restriction on the allowable stress of potential was improved. Meanwhile, a Bimodal Weibull distribution model for fatigue life and its parameter estimation method were established based on a twoparameter Weibull distribution. The fatigue life at a specific reliability level and confidence level was calculated by using the bootstrap method. The calculation results showed that fatigue life estimated by using the bimodal Weibull distribution at the high reliability level and high confidence level is higher than that estimated by using the two-parameter Weibull distribution. Furthermore,The S-N curve at the specified confidence level and reliability level was fitted.
文摘This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.