Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective metho...Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective method to mitigate the problem,which is able to learn an adaptive segmentation model by transferring knowledge from a rich-labeled source domain.In this paper,we propose a multi-level distribution alignment-based unsupervised domain adaptation network(MDA-Net)for segmentation of 3D neuronal soma images.Distribution alignment is performed in both feature space and output space.In the feature space,features from different scales are adaptively fused to enhance the feature extraction capability for small target somata and con-strained to be domain invariant by adversarial adaptation strategy.In the output space,local discrepancy maps that can reveal the spatial structures of somata are constructed on the predicted segmentation results.Then thedistribution alignment is performed on the local discrepancies maps across domains to obtain a superior discrepancy map in the target domain,achieving refined segmentation performance of neuronal somata.Additionally,after a period of distribution align-ment procedure,a portion of target samples with high confident pseudo-labels are selected as training data,which assist in learning a more adaptive segmentation network.We verified the superiority of the proposed algorithm by comparing several domain adaptation networks on two 3D mouse brain neuronal somata datasets and one macaque brain neuronal soma dataset.展开更多
Heterogeneous information networks(HINs)have been extensively applied to real-world tasks,such as recommendation systems,social networks,and citation networks.While existing HIN representation learning methods can eff...Heterogeneous information networks(HINs)have been extensively applied to real-world tasks,such as recommendation systems,social networks,and citation networks.While existing HIN representation learning methods can effectively learn the semantic and structural features in the network,little awareness was given to the distribution discrepancy of subgraphs within a single HIN.However,we find that ignoring such distribution discrepancy among subgraphs from multiple sources would hinder the effectiveness of graph embedding learning algorithms.This motivates us to propose SUMSHINE(Scalable Unsupervised Multi-Source Heterogeneous Information Network Embedding)-a scalable unsupervised framework to align the embedding distributions among multiple sources of an HiN.Experimental results on real-world datasets in a variety of downstream tasks validate the performance of our method over the state-of-the-art heterogeneous information network embedding algorithms.展开更多
基金supported by the Fund of Key Laboratory of Biomedical Engineering of Hainan Province(No.BME20240001)the STI2030-Major Projects(No.2021ZD0200104)the National Natural Science Foundations of China under Grant 61771437.
文摘Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective method to mitigate the problem,which is able to learn an adaptive segmentation model by transferring knowledge from a rich-labeled source domain.In this paper,we propose a multi-level distribution alignment-based unsupervised domain adaptation network(MDA-Net)for segmentation of 3D neuronal soma images.Distribution alignment is performed in both feature space and output space.In the feature space,features from different scales are adaptively fused to enhance the feature extraction capability for small target somata and con-strained to be domain invariant by adversarial adaptation strategy.In the output space,local discrepancy maps that can reveal the spatial structures of somata are constructed on the predicted segmentation results.Then thedistribution alignment is performed on the local discrepancies maps across domains to obtain a superior discrepancy map in the target domain,achieving refined segmentation performance of neuronal somata.Additionally,after a period of distribution align-ment procedure,a portion of target samples with high confident pseudo-labels are selected as training data,which assist in learning a more adaptive segmentation network.We verified the superiority of the proposed algorithm by comparing several domain adaptation networks on two 3D mouse brain neuronal somata datasets and one macaque brain neuronal soma dataset.
基金supported by the Research Grants Council of Hong Kong(17308321)the HKUTCL Joint Research Center for Artificial Intelligence sponsored by TCL Corporate Research(Hong Kong).
文摘Heterogeneous information networks(HINs)have been extensively applied to real-world tasks,such as recommendation systems,social networks,and citation networks.While existing HIN representation learning methods can effectively learn the semantic and structural features in the network,little awareness was given to the distribution discrepancy of subgraphs within a single HIN.However,we find that ignoring such distribution discrepancy among subgraphs from multiple sources would hinder the effectiveness of graph embedding learning algorithms.This motivates us to propose SUMSHINE(Scalable Unsupervised Multi-Source Heterogeneous Information Network Embedding)-a scalable unsupervised framework to align the embedding distributions among multiple sources of an HiN.Experimental results on real-world datasets in a variety of downstream tasks validate the performance of our method over the state-of-the-art heterogeneous information network embedding algorithms.