A statistic method, statistics of extreme values (SEV), was described in detail, which can esti mate the size of maximum inclusion in steel. The characteristic size of the maximum inclusion in a high clean bearing s...A statistic method, statistics of extreme values (SEV), was described in detail, which can esti mate the size of maximum inclusion in steel. The characteristic size of the maximum inclusion in a high clean bearing steel (GCrl5) was evaluated by this method, and the morphology and corn position of large inclusions found were analyzed by scanning electron microscopy (SEM). When standard inspection area (S0) is 280 mm2, the characteristic size of the biggest inclusion found in 30 standard inspection area is 23.93 μm, and it has a 99.9% probability of the characteristic size of maximum inclusion predicted being no larger than 36.85μm in the experimental steel. SEM result shows that large inclusions found are mainly composed of CaS, calcium-aluminate and MgO. Compositing widely exists in large inclusions in high clean bearing steel. Compared with traditional evaluation method, SEV method mainly focuses on inclusion size, and the esti- mation result is not affected by inclusion types. SEV method is suitable for the inclusion eval uation of high clean bearing steel.展开更多
Developing a watermarking method that is robust to cropping attack is a challenging task in image watermarking. The moment-based watermarking schemes show good robustness to common signal processing attacks and some g...Developing a watermarking method that is robust to cropping attack is a challenging task in image watermarking. The moment-based watermarking schemes show good robustness to common signal processing attacks and some geometric attacks but are sensitive to cropping attack. In this paper, we modify the moment-based approach to deal with cropping attack. Firstly, we find the probability density function (PDF) of the pixel value distribution from the original image. Secondly, we reshape and normalize the pdf of the pixel value distribution (PPVD) to form a two dimensional image. Then, the moment invariants are calculated from the PPVD image. Since PPVD is insensitive to cropping, the proposed method is robust to cropping attack. Besides, it also has high robustness against other common attacks. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed method.展开更多
基金funded by National Natural Science Foundation of China(51474076)International S&T Cooperation Program(ISTCP)of China(2015DFG51950)
文摘A statistic method, statistics of extreme values (SEV), was described in detail, which can esti mate the size of maximum inclusion in steel. The characteristic size of the maximum inclusion in a high clean bearing steel (GCrl5) was evaluated by this method, and the morphology and corn position of large inclusions found were analyzed by scanning electron microscopy (SEM). When standard inspection area (S0) is 280 mm2, the characteristic size of the biggest inclusion found in 30 standard inspection area is 23.93 μm, and it has a 99.9% probability of the characteristic size of maximum inclusion predicted being no larger than 36.85μm in the experimental steel. SEM result shows that large inclusions found are mainly composed of CaS, calcium-aluminate and MgO. Compositing widely exists in large inclusions in high clean bearing steel. Compared with traditional evaluation method, SEV method mainly focuses on inclusion size, and the esti- mation result is not affected by inclusion types. SEV method is suitable for the inclusion eval uation of high clean bearing steel.
基金partially funded by the Australian Research Council(No.DP110102076)
文摘Developing a watermarking method that is robust to cropping attack is a challenging task in image watermarking. The moment-based watermarking schemes show good robustness to common signal processing attacks and some geometric attacks but are sensitive to cropping attack. In this paper, we modify the moment-based approach to deal with cropping attack. Firstly, we find the probability density function (PDF) of the pixel value distribution from the original image. Secondly, we reshape and normalize the pdf of the pixel value distribution (PPVD) to form a two dimensional image. Then, the moment invariants are calculated from the PPVD image. Since PPVD is insensitive to cropping, the proposed method is robust to cropping attack. Besides, it also has high robustness against other common attacks. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed method.