期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
Fracture parameter diagnostic method during staged multi-cluster fracturing based on distributed temperature sensing
1
作者 WEI Cao LI Haitao +4 位作者 ZHU Xiaohua ZHANG Nan LUO Hongwen TU Kun CHENG Shiqing 《Petroleum Exploration and Development》 2025年第2期496-505,共10页
The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat tr... The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance. 展开更多
关键词 shale oil horizontal well multi-stage multi-cluster fracturing distributed temperature sensing thermo-fluid coupling model fracture parameters real-time monitoring
在线阅读 下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing 被引量:1
2
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer Pile‒soil interface
在线阅读 下载PDF
Wavelength Dispersion Analysis on Fiber-Optic Raman Distributed Temperature Sensor System 被引量:12
3
作者 Weijie WANG Jun CHANG +7 位作者 Guangping LV Zongliang WANG Zhi LIU Sha LUO Shuo JIANG Xiangzhi LIU Xiaohui LIU Yongning LIU 《Photonic Sensors》 SCIE EI CAS 2013年第3期256-261,共6页
The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the... The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the fiber position error caused by the wavelength dispersion. The principle of the proposed algorithm is described theoretically, and the correction on each point along the entire fiber is realized. Temperature simulation results validate that the temperature distortion is corrected and the temperature accuracy is effectively improved from +5 ℃ to ±1 ℃. 展开更多
关键词 distributed temperature sensor wavelength dispersion correction algorithm
原文传递
Application of Wavelet Transform Modulus Maxima in Raman Distributed Temperature Sensors 被引量:9
4
作者 Zongliang WANG Jun CHANG Sasa ZHANG Sha LUO Cuanwu JIA Boning SUN Shuo JIANG Yongning LIU Xiaohui LIU Guangping LV Zhi LIU 《Photonic Sensors》 SCIE EI CAS 2014年第2期142-146,共5页
We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation... We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation with the growth of the decomposition scale at 30 ℃, and the signal WTMM was obtained by the wavelet decomposition modulus on every decomposition scale based on the modulus propagating difference between the signal and noise. Then, we reconstructed the signal using the signal WTMM. Experimental results show that the proposed method is effective for de-noising, allowing for a temperature error decrease of about 1 ℃ at 40 ℃ and 50℃ comparing to the original data. 展开更多
关键词 distributed temperature sensor RAMAN wavelet transform modulus maxima
原文传递
OFDR Based Distributed Temperature Sensor Using the Three-Channel Simultaneous Radio-Frequency Lock-ln Technique 被引量:2
5
作者 Ke CHEN Xinlei ZHOU Wei PENG Qingxu YU 《Photonic Sensors》 SCIE EI CAS CSCD 2015年第3期217-223,共7页
Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflecto... Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflectometry (IOFDR) and the three-channel simultaneous radio-frequency (RF) lock-in amplifier (LIA) is presented to improve the signal-to-noise ratio (SNR) of the measured spontaneous Raman backscattered light. The field programmable gate array (FPGA) based RF-LIA is designed with a novel and simple structure. The measurement frequency range is achieved from 1 kHz to 100 MHz. Experimental results show that the backscattered light signal of picowatt level can be detected with high SNR. With a 2.5kin single-mode fiber, a 1064nm laser source, and the measurement time of 500 s, this sensing system can reach a spatial resolution of 0.93 m and a temperature resolution of about 0.2℃. 展开更多
关键词 distributed temperature sensor incoherent optical frequency domain reflectometry radio-frequency lock-in amplifier simultaneous detection
原文传递
Modified simulated annealing evolutionary algorithm for fully distributed fiber Bragg grating temperature sensing
6
作者 陈娜 李承林 +4 位作者 陈振宜 庞拂飞 曾祥龙 孙晓岚 王廷云 《Journal of Shanghai University(English Edition)》 CAS 2011年第1期58-62,共5页
In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method ... In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s. 展开更多
关键词 fiber Bragg grating (FBG) spectrum inversion algorithm fully distributed temperature sensing
在线阅读 下载PDF
Network Integration of Distributed Optical Fiber Temperature Sensor
7
作者 Gui-Yan Li Hong-Lin Liu Zai-Xuan Zhang 《Journal of Electronic Science and Technology of China》 2008年第4期399-401,共3页
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil... The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust. 展开更多
关键词 distributed optical fiber temperature sensor Modbus TCP/IP supervisory control and dataacquisition (SCADA).
在线阅读 下载PDF
Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath
8
作者 Teng Xia Xiaohui Zhang +4 位作者 Ding Ma Zhi Yang Xinting Tong Yutang Zhao Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第1期121-140,共20页
Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphas... Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region. 展开更多
关键词 Copper smelting bottom-blown melting furnace flow characteristics temperature distribution numerical simulation
在线阅读 下载PDF
A city-wide investigation on the subsurface temperature evolution and geothermal capacity evaluation
9
作者 Liwei Zhang Chun Liu +2 位作者 Bin Shi Peter Bayer Huan Geng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3609-3618,共10页
The subsurface urban heat island(UHI)effect can provide latent clean geothermal potentials for cities.Understanding the city-wide subsurface temperature evolution under different land surfaces is significant in making... The subsurface urban heat island(UHI)effect can provide latent clean geothermal potentials for cities.Understanding the city-wide subsurface temperature evolution under different land surfaces is significant in making better use of geothermal energy.This research presents a study of Nanjing to identify the city-wide temperature distribution and evolution characteristics and further estimates the geothermal potential in Nanjing.Low-cost satellite-measured temperatures were used to derive the subsurface temperatures through a liner regression correction method,with higher accuracy verified by measured borehole data.The simulation results indicate that the concrete surface exhibits higher average temperatures than the grassland surface,resulting in relatively higher subsurface temperatures.The deviations of simulated subsurface temperatures are attributed to many factors,including the influence of complex atmospheric conditions on satellite-measured temperature accuracy,land surface heat absorption,and infiltration in the shallower layer.Furthermore,it reveals that the urban areas have 14.7%greater geothermal potential compared to rural areas,due to the subsurface UHI effect.This study provides a potentially efficient and convenient method for the estimation of potential urban geothermal energy. 展开更多
关键词 Field-monitoring Satellite temperature correction temperature distribution Geothermal capacity evaluation
在线阅读 下载PDF
Analytical Modeling of Selective Laser-Melting Temperature of AlSi10Mg Alloy
10
作者 Xiaobo Yang Zhihui Zhang +6 位作者 Man Zhao Bo Qian Jian Mao Gang Liu Liqiang Zhang Yixuan Feng Steven Y.Liang 《Additive Manufacturing Frontiers》 2025年第3期169-181,共13页
Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aeros... Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aerospace and automotive industries,which require lightweight structures with superior thermal and mechanical properties.The thermal load induces residual tensile stress,leading to a decline in the geometric accuracy of the workpiece and causing cracks that reduce the fatigue life of the alloy.The rapid movement of the laser heat source during the material formation creates a localized and inhomogeneous temperature field in the powder bed.Significant temperature gradients are generated,resulting in thermal stresses and distortions within the part,affecting the quality of the molding.Therefore,understanding the effects of processing parameters and scanning strategies on the temperature field in SLM is crucial.To address these issues,this study proposes a multiscale method for predicting the complex transient temperature field during the manufacturing process based on the heat-conduction equation.Considering the influence of temperature on the material properties,a temperature-prediction model for discontinuous scanning paths in SLM and a temperature field-calculation model for irregular scanning paths are developed.The models are validated using finite-element results and are in excellent agreement.The analytical model is then used to investigate the effects of the laser power,scanning speed,and scanning spacing on the temperature distribution.The results reveal that the peak temperature decreases exponentially with increasing scanning speed and increases linearly with increasing laser power.In addition,with increasing scanning spacing,the peak temperature of the adjacent tracks near the observation point decreases linearly.These findings are critical for optimizing the SLM-process parameters and improving the material-forming quality. 展开更多
关键词 Analytical model Selective laser melting temperature distribution Heat-source modeling AlSi10Mg alloy Scanning strategy
在线阅读 下载PDF
Impact of Extreme Environmental Temperature on the Electric-Thermal Field Distribution of ERIP Bushing for 750 kV High Voltage Reactors
11
作者 Minjie Li Wanhao Shi +3 位作者 Dingqian Yang Manman Yuan Jiabao Du Xuandong Liu 《Energy Engineering》 2025年第10期4297-4312,共16页
In Xinjiang,China,Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures.To mitigate this problem,oil-free a... In Xinjiang,China,Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures.To mitigate this problem,oil-free and explosion-proof epoxy resin-impregnated paper(ERIP)bushings are recommended as replacements.This study develops a multi-physics(electric-thermal-fluid)coupling model for 750 kV high voltage reactors ERIP bushings.The model aims to comprehensively assess their thermal and electrical performance under extreme ambient temperatures ranging from−40℃ to 90℃ and oil temperatures varying from−10℃ to 90℃.The results demonstrate that the bushing temperature rises consistently with increases in ambient temperature.Additionally,the location of the hottest point on the conductive rod exhibits an upward shift as the ambient temperature climbs.Significantly,when a temperature difference exists between the oil and the external environment,this upward movement remains relatively constrained.Even when the external temperature increases from−40℃ to 80℃,the hottest point shifts upward only 2457 mm.Conversely,in the absence of a temperature difference between the oil and external environment,a modest 10℃ increase in ambient temperature(from 80℃ to 90℃)triggers a substantial 11,356 mm upward displacement of the hottest point.Moreover,this study reveals that the electric field distribution within the bushings remains largely unaffected by environmental temperature changes. 展开更多
关键词 Epoxy resin impregnated paper bushing temperature distribution extreme ambient temperature
在线阅读 下载PDF
The evolving distribution of humidity conditional on temperature and implications for compound heat extremes across China in a warming world
12
作者 Caixia Liang Jiacan Yuan 《Atmospheric and Oceanic Science Letters》 2025年第6期9-14,共6页
The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availabi... The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availability and is constrained by air temperature,it is important to project the changes in the distribution of atmospheric humidity conditional on air temperature as the climate continuously warms.Here,a non-crossing quantile smoothing spline is employed to build quantile regression models emulating conditional distributions of dew point(a measure of humidity)on local temperature evolving with escalating global mean surface temperature.By applying these models to 297 weather stations in seven regions in China,the study analyzes historical trends of humid-heat and dry-hot days,and projects their changes under global warming of 2.0℃ and 4.5℃.In response to global warming,rising trends of humid-heat extremes,while weakening trends of dry-hot extremes,are observed at most stations in Northeast China.Additionally,results indicate an increasing trend in dry-hot extremes at numerous stations across central China,but a rise in humid-heat extremes over Northwest China and coastal regions.These trends found in the current climate state are projected to intensify under 2.0℃ and 4.5℃ warming,possibly influenced by the heterogeneous variations in precipitation,soil moisture,and water vapor fluxes.Requiring much lower computational resources than coupled climate models,these quantile regression models can further project compound humidity and temperature extremes in response to different levels of global warming,potentially informing the risk management of compound humid-heat extremes on a local scale. 展开更多
关键词 Global warming Conditional distribution of dew point on temperature Non-crossing quantile smoothing spline model Compound heat extremes
在线阅读 下载PDF
Numerical simulation of downhole temperature distribution in producing oil wells 被引量:7
13
作者 石颖 宋延杰 刘洪 《Applied Geophysics》 SCIE CSCD 2008年第4期340-349,共10页
An improved numerical simulation method is presented to calculate the downhole temperature distribution for multiple pay zones in producing oil wells. Based on hydrodynamics and heat transfer theory, a 2-D temperature... An improved numerical simulation method is presented to calculate the downhole temperature distribution for multiple pay zones in producing oil wells. Based on hydrodynamics and heat transfer theory, a 2-D temperature field model in cylindrical coordinates is developed. In the model, we considered general heat conduction as well as the heat convection due to fluid flow from porous formation to the borehole. We also take into account the fluid velocity variation in the wellbore due to multiple pay zones. We present coupled boundary conditions at the interfaces between the wellbore and adjacent formation, the wellbore and pay zone, and the pay zone and adjacent formation. Finally, an alternating direction implicit difference method (ADI) is used to solve the temperature model for the downhole temperature distribution. The comparison of modeled temperature curve with actual temperature log indicates that simulation result is in general quite similar to the actual temperature log. We found that the total production rate, production time, porosity, thickness of pay zones, and geothermal gradient, all have effects on the downhole temperature distribution. 展开更多
关键词 oil well downhole temperature distribution heat transfer numerical simulation
在线阅读 下载PDF
Numerical Simulation of Temperature Distribution and ThermalStress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid–Solid Coupling Method 被引量:18
14
作者 W.Z.Tang L.Yang +3 位作者 W.Zhu Y.C.Zhou J.W.Guo C.LU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期452-458,共7页
To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer a... To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted. Based on the simulation results, it is found that a non-uniform distribution of temperature appears in different positions of the blade surface, which has directly impacted on stress field. The maximum temperature with a value of 1030 ℃ occurs at the leading edge. During the steady stage, the maximum stress of thermally grown oxide (TGO) appears in the middle of the suction side, reaching 3.75 GPa. At the end stage of cooling, the maximum compressive stress of TGO with a value of-3.5 GPa occurs at the leading edge. Thus, it can be predicted that during the steady stage the dangerous regions may locate at the suction side, while the leadine edge mav be more Drone to failure on cooling. 展开更多
关键词 Thermal barrier coatings temperature distribution Thermal-stress field Conjugate heat transfer Decoupled thermal-stress calculation Fluid–solid coupling
原文传递
Numerical Simulation of Combustion Characteristics in High Temperature Air Combustion Furnace 被引量:13
15
作者 WANG Ai-hua CAI Jiu-ju XIE Guo-wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第2期6-10,共5页
The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence ... The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence behavior was modeled using the standard k-ε model with wall function, and radiation was handled using discrete ordinate radiation model. The PDF (probability density function) /mixture fraction combustion model was used to simulate the propane combustion. Additionally, computations of NOx formation rates and NOx concentration were carried out using a post-processor on the basis of previously calculated velocities, turbulence, temperature, and chemical composition fields. The results showed that high temperature air combustion (HiTAC) is spread over a much larger volume than traditional combustion, flame volume increases with a reduction of oxygen concentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. The temperature profile becomes more uniform when oxygen concentration in preheated air decreases, especially at low oxygen levels. Increase in fuel inlet tempera- ture lessens the mixing of the fuel and air in primary combustion zone, creates more uniform distribution of reactants inside the flame, decreases the maximum temperature in furnace, and reduces NOx emission greatly. 展开更多
关键词 high temperature air combustion flame property temperature distribution NOx formation NOx emission
原文传递
Study of Temperature Distribution Along an Artificially Polluted Insulator String 被引量:25
16
作者 B Subba Reddy G R Nagabhushana 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第2期1715-1720,共6页
Insulator becomes wet partially or completely, and the pollution layer on itbecomes conductive, when collecting pollutants for an extended period during dew, light rain, mist,fog or snow melting. Heavy rain is a compl... Insulator becomes wet partially or completely, and the pollution layer on itbecomes conductive, when collecting pollutants for an extended period during dew, light rain, mist,fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layerwithout initiating other stages of breakdown or it may bridge the gaps between sheds to promoteflashover. The insulator with a conducting pollution layer being energized, can cause a surfaceleakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, theconducting pollution layer becomes broken by dry bands (at spots of high current density),interrupting the flow of leakage current. Voltage across insulator gets concentrated across drybands, and causes high electric stress and breakdown (dry band arcing). If the resistance of theinsulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminalscausing flashover. The present paper concerns the evaluation of the temperature distribution alongthe surface of an energized artificially polluted insulator string. 展开更多
关键词 temperature distribution artificially polluted insulator string
在线阅读 下载PDF
Multivariable temperature measurement and control system of large-scaled vertical quench furnace based on temperature field 被引量:7
17
作者 XuanZHOU ShouyiYU +1 位作者 JiangYU LiequanLIANG 《控制理论与应用(英文版)》 EI 2004年第4期401-405,共5页
A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospac... A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospace industry. For the effective operation of the furnace, it is essential to analyze the radial temperature distribution of the furnace. A set of thermodynamic balance equations modeling is established firsdy. By utilizing the numerical analysis result to modify the temperature measurements, the control accuracy and precision of the temperature are truly guaranteed. Furthermore, the multivariable decoupling self-learning PID control algorithm based on the characteristics of strong coupling between the multi-zones in the large-scaled furnace is implemented to ensure the true homogeneity of the axial temperature distribution. Finally, the redundant structure composed of industrial control computers and touch panels leads to great improvement of system reliability. 展开更多
关键词 Axial temperature distribution homogeneity Radial temperature distribution Decoupling self-learning PID control Redundant structure
在线阅读 下载PDF
Finite Element Analysis of the Temperature Distribution in Orthogonal Metal Machining
18
作者 刘德福 于晓霞 娄平宜 《Journal of Beijing Institute of Technology》 EI CAS 1999年第4期386-391,共6页
Aim To Research the temperature distribution in orthogonal metal machining and to build a finite element analysis model about the temperature distribution. Methods With the finite element method of thermal conductio... Aim To Research the temperature distribution in orthogonal metal machining and to build a finite element analysis model about the temperature distribution. Methods With the finite element method of thermal conduction, the temperature distributions in various machining conditions were computed according to the experimental data such as cutting force, shear angle, etc. Results The computational results agree with some classic experimental results, and thermal effect due to process parameters was observed. Conclusion The finite element analysis model is reasonable, and it's a feasible scheme for studying the temperature distribution in orthogonal metal machining system. 展开更多
关键词 temperature distribution finite element method orthogonal cutting
在线阅读 下载PDF
Effect of pulsed current on temperature distribution,weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints 被引量:6
19
作者 N.KARUNAKARAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期278-286,共9页
Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardnes... Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone. 展开更多
关键词 aluminium alloy gas tungsten arc welding pulsed current temperature distribution bead profiles tensile properties
在线阅读 下载PDF
Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy 被引量:5
20
作者 Y.H.Yau A.Hussain +2 位作者 R.K.Lalwani H.K.Chan N.Hakimi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期779-787,共9页
Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy A12024- T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three differen... Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy A12024- T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were amxed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to A12024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in A12024-T3 and is potentially more useful than models derived previously. 展开更多
关键词 aluminum alloys friction stir welding WELDS temperature distribution
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部