Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors i...Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model t...This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.展开更多
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p...The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.展开更多
In this paper, the asynchrony problem of distributed detection is analyzed and discussed.Two approaches are proposed and related results are given. It is shown that all fusion rules can beunified in the framework with...In this paper, the asynchrony problem of distributed detection is analyzed and discussed.Two approaches are proposed and related results are given. It is shown that all fusion rules can beunified in the framework with asynchrony which could be much ciooer to industrial practice.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
To Integrate the capacity of sensing, communication, computing, and actuating, one of the compelling technological advances of these years has been the appearance of distributed wireless sensor network (DSN) for infor...To Integrate the capacity of sensing, communication, computing, and actuating, one of the compelling technological advances of these years has been the appearance of distributed wireless sensor network (DSN) for information gathering tasks. In order to save the energy, multi-hop routing between the sensor nodes and the sink node is necessary because of limited resource. In addition, the unpredictable conditional factors make the sensor nodes unreliable. In this paper, the reliability of routing designed for sensor network and some dependability issues of DSN, such as MTTF (mean time to failure) and the probability of connectivity between the sensor nodes and the sink node are analyzed. Unfortunately, we could not obtain the accurate result for the arbitrary network topology, which is #P-hard problem. And the reliability analysis of restricted topologies clustering-based is given. The method proposed in this paper will show us a constructive idea about how to place energy-constrained sensor nodes in the network efficiently from the prospective of reliability.展开更多
As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,Brillouin-based distributed scattering sensing techniques represent a new physical approa...As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring,which seems extremely promising and is receiving most attentions.This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology,especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.展开更多
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random t...The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.展开更多
A distributed optical-fiber acoustic sensor is an acoustic sensor that uses the optical fiber itself as a photosensitive medium,and is based on Rayleigh backscattering in an optical fiber.The sensor is widely used in ...A distributed optical-fiber acoustic sensor is an acoustic sensor that uses the optical fiber itself as a photosensitive medium,and is based on Rayleigh backscattering in an optical fiber.The sensor is widely used in the safety monitoring of oil and gas pipelines,the classification of weak acoustic signals,defense,seismic prospecting,and other fields.In the field of seismic prospecting,distributed optical-fiber acoustic sensing(DAS)will gradually replace the use of the traditional geophone.The present paper mainly expounds the recent application of DAS,and summarizes recent research achievements of DAS in resource exploration,intrusion monitoring,pattern recognition,and other fields and various DAS system structures.It is found that the high-sensitivity and long-distance sensing capabilities of DAS play a role in the extensive monitoring applications of DAS in engineering.The future application and development of DAS technology are examined,with the hope of promoting the wider application of the DAS technology,which benefits engineering and society.展开更多
A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs ...A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.展开更多
Friction drag primarily determines the total drag of transport systems. A promising approach to reduce drag at high Reynolds numbers(> 104) are active transversal surface waves in combination with passive methods l...Friction drag primarily determines the total drag of transport systems. A promising approach to reduce drag at high Reynolds numbers(> 104) are active transversal surface waves in combination with passive methods like a riblet surface. For the application in transportation systems with large surfaces such as airplanes, ships or trains, a large scale distributed real-time actuator and sensor network is required. This network is responsible for providing connections between a global flow control and distributed actuators and sensors. For the development of this network we established at first a small scale network model based on Simulink and True Time. To determine timescales for network events on different package sizes we set up a Raspberry Pi based testbed as a physical representation of our first model. These timescales are reduced to time differences between the deterministic network events to verify the behavior of our model. Experimental results were improved by synchronizing the testbed with sufficient precision. With this approach we assure a link between the large scale model and the later constructed microcontroller based real-time actuator and sensor network for distributed active turbulent flow control.展开更多
Distributed acoustic sensors(DASs)can effectively monitor acoustic fields along sensing fibers with high sensitivity and high response speed.However,their data processing is limited by the performance of electronic si...Distributed acoustic sensors(DASs)can effectively monitor acoustic fields along sensing fibers with high sensitivity and high response speed.However,their data processing is limited by the performance of electronic signal processing,hindering real-time applications.The time-wavelength multiplexed photonic neural network accelerator(TWM-PNNA),which uses photons instead of electrons for operations,significantly enhances processing speed and energy efficiency.Therefore,we explore the feasibility of applying TWMPNNA to DAS systems.We first discuss processing large DAS system data for compatibility with the TWM-PNNA system.We also investigate the effects of chirp on optical convolution in complex tasks and methods to mitigate its impact on classification accuracy.Furthermore,we propose a method for achieving an optical full connection and study the influence of pruning on the full connection to reduce the computational burden of the model.Experimental results indicate that decreasing the ratio of Δλ_(chirp)/Δλ or choosing push-pull modulation can eliminate the impact of chirp on recognition accuracy.In addition,when the full connection parameter retention rate is no less than 60%,it can still maintain a classification accuracy of over 90%.TWM-PNNA provides an innovative computational framework for DAS systems,paving the way for the all-optical fusion of DAS systems with computational systems.展开更多
Distributed pressure sensor array is a promising approach for the estimation of flight parameters for small unmanned aerial vehicles.Current flexible pressure sensor arrays are conventionally subjected to limited sens...Distributed pressure sensor array is a promising approach for the estimation of flight parameters for small unmanned aerial vehicles.Current flexible pressure sensor arrays are conventionally subjected to limited sensor resolution,poor bending flexibility,and inadequate packaging protection,resulting in insufficient precision for flight parameter estimation.Here we present a high-resolution differential pressure sensor array using a calorimetric measurement method and a multilayer polyimide bonding technique.The proposed differential pressure sensor array reaches a detection limit of 36.5 mPa over a range of 500 Pa and shows high repeatability when attached to varying curved surfaces.In addition,a superhydrophobic packaging is integrated into the sensor fabrication process,endowing it with waterproof capability.Utilizing a multilayer perceptron neural network,we demonstrated the function of the sensor array in estimating airspeeds and angle of attacks,achieving average solving errors of 0.15 m/s and 0.37°,respectively.展开更多
In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to ide...In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.展开更多
This paper addresses the problem of real-time position and orientation estimation of networked mobile robots in two-dimensional Euclidean space with simultaneous tracking of a rigid unknown object based on exterocep...This paper addresses the problem of real-time position and orientation estimation of networked mobile robots in two-dimensional Euclidean space with simultaneous tracking of a rigid unknown object based on exteroceptive sensory information extracted from distributed vision systems. The sufficient and necessary conditions for team localization are proposed. A localization and object tracking approach based on statistical operators and graph searching algorithms is presented for a team of robots localized with het- erogeneous sensors. The approach was implemented in an experimental platform consisting of car-like mobile robots equipped with omnidirectional video cameras and IEEE 802.11b wireless networking. The experimental results validate the approach.展开更多
Individuals exchange information,experience and strategy based on communication.Communication is the basis for individuals to form swarms and the bridge of swarms to realize cooperative control.In this paper,the multi...Individuals exchange information,experience and strategy based on communication.Communication is the basis for individuals to form swarms and the bridge of swarms to realize cooperative control.In this paper,the multirobot swarm and its cooperative control and communication methods are reviewed,and we summarize these methods from the task,control,and perception levels.Based on the research,the cooperative control and communication methods of intelligent swarms are divided into the following four categories:task assignment based methods(divided into market-based methods and alliance based methods),bio-inspired methods(divided into biochemical information inspired methods,vision based methods and self-organization based methods),distributed sensor fusion and reinforcement learning based methods,and we briefly define each method and introduce its basic ideas.Based on WOS database,we divide the development of each method into several stages according to the time distribution of the literature,and outline the main research content of each stage.Finally,we discuss the communication problems of intelligent swarms and the key issues,challenges and future work of each method.展开更多
基金financial supports from the National Natural Science Foundation of China(NSFC)(No.61922033&U22A20206)Zhejiang Provincial Market Supervision Bureau Young Eagle Plan project under Grant CY2022228.
文摘Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
文摘This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.
基金jointly supported by the Science and Technology Program of Guangzhou (202103040003)the offshore NGHs production test projects under the Marine Geological Survey Program initiated by the China Geological Survey (DD20190226, DD20190218 and DD20221706)+2 种基金the Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020] 045)the financial support from China Geological Survey (DD20221703)the National Natural Science Foundation of China (NSFC) (6210030553)。
文摘The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.
文摘In this paper, the asynchrony problem of distributed detection is analyzed and discussed.Two approaches are proposed and related results are given. It is shown that all fusion rules can beunified in the framework with asynchrony which could be much ciooer to industrial practice.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
基金This work was supported by National Defence Advanced Research Fund .Serial No.5141604010HT0117
文摘To Integrate the capacity of sensing, communication, computing, and actuating, one of the compelling technological advances of these years has been the appearance of distributed wireless sensor network (DSN) for information gathering tasks. In order to save the energy, multi-hop routing between the sensor nodes and the sink node is necessary because of limited resource. In addition, the unpredictable conditional factors make the sensor nodes unreliable. In this paper, the reliability of routing designed for sensor network and some dependability issues of DSN, such as MTTF (mean time to failure) and the probability of connectivity between the sensor nodes and the sink node are analyzed. Unfortunately, we could not obtain the accurate result for the arbitrary network topology, which is #P-hard problem. And the reliability analysis of restricted topologies clustering-based is given. The method proposed in this paper will show us a constructive idea about how to place energy-constrained sensor nodes in the network efficiently from the prospective of reliability.
基金National High Technology Research and Development Plans(the"863"projects) of China(2008AA04Z406)
文摘As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring,which seems extremely promising and is receiving most attentions.This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology,especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372156 and 61405053)the Natural Science Foundation of Zhejiang Province of China(Grant No.LZ13F04001)
文摘The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
基金supported by the Science and Technology Development Plan of Jilin Province(No.20180201036GX)
文摘A distributed optical-fiber acoustic sensor is an acoustic sensor that uses the optical fiber itself as a photosensitive medium,and is based on Rayleigh backscattering in an optical fiber.The sensor is widely used in the safety monitoring of oil and gas pipelines,the classification of weak acoustic signals,defense,seismic prospecting,and other fields.In the field of seismic prospecting,distributed optical-fiber acoustic sensing(DAS)will gradually replace the use of the traditional geophone.The present paper mainly expounds the recent application of DAS,and summarizes recent research achievements of DAS in resource exploration,intrusion monitoring,pattern recognition,and other fields and various DAS system structures.It is found that the high-sensitivity and long-distance sensing capabilities of DAS play a role in the extensive monitoring applications of DAS in engineering.The future application and development of DAS technology are examined,with the hope of promoting the wider application of the DAS technology,which benefits engineering and society.
基金supported by the National 863 Projects under Grant No. 2007AA03Z415.
文摘A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.
基金supported by German Research Foundation(DFG)(No.1779-WA3076/1-1)
文摘Friction drag primarily determines the total drag of transport systems. A promising approach to reduce drag at high Reynolds numbers(> 104) are active transversal surface waves in combination with passive methods like a riblet surface. For the application in transportation systems with large surfaces such as airplanes, ships or trains, a large scale distributed real-time actuator and sensor network is required. This network is responsible for providing connections between a global flow control and distributed actuators and sensors. For the development of this network we established at first a small scale network model based on Simulink and True Time. To determine timescales for network events on different package sizes we set up a Raspberry Pi based testbed as a physical representation of our first model. These timescales are reduced to time differences between the deterministic network events to verify the behavior of our model. Experimental results were improved by synchronizing the testbed with sufficient precision. With this approach we assure a link between the large scale model and the later constructed microcontroller based real-time actuator and sensor network for distributed active turbulent flow control.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.U2001601,62175100,62175103,and 61775094)the Equipping Preresearch Project(Grant No.30601010104)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.2024300447,0213-14380211,and 0213-14380265)the Jiangsu Innovation Teams and AI&AI for Science Project of Nanjing University.
文摘Distributed acoustic sensors(DASs)can effectively monitor acoustic fields along sensing fibers with high sensitivity and high response speed.However,their data processing is limited by the performance of electronic signal processing,hindering real-time applications.The time-wavelength multiplexed photonic neural network accelerator(TWM-PNNA),which uses photons instead of electrons for operations,significantly enhances processing speed and energy efficiency.Therefore,we explore the feasibility of applying TWMPNNA to DAS systems.We first discuss processing large DAS system data for compatibility with the TWM-PNNA system.We also investigate the effects of chirp on optical convolution in complex tasks and methods to mitigate its impact on classification accuracy.Furthermore,we propose a method for achieving an optical full connection and study the influence of pruning on the full connection to reduce the computational burden of the model.Experimental results indicate that decreasing the ratio of Δλ_(chirp)/Δλ or choosing push-pull modulation can eliminate the impact of chirp on recognition accuracy.In addition,when the full connection parameter retention rate is no less than 60%,it can still maintain a classification accuracy of over 90%.TWM-PNNA provides an innovative computational framework for DAS systems,paving the way for the all-optical fusion of DAS systems with computational systems.
基金supported financially by National Natural Science Foundation of China(Nos.T2121003,U23A20638.)the National Key Research and Development Program of China(2023YFB3208000,2023YFB3208001).
文摘Distributed pressure sensor array is a promising approach for the estimation of flight parameters for small unmanned aerial vehicles.Current flexible pressure sensor arrays are conventionally subjected to limited sensor resolution,poor bending flexibility,and inadequate packaging protection,resulting in insufficient precision for flight parameter estimation.Here we present a high-resolution differential pressure sensor array using a calorimetric measurement method and a multilayer polyimide bonding technique.The proposed differential pressure sensor array reaches a detection limit of 36.5 mPa over a range of 500 Pa and shows high repeatability when attached to varying curved surfaces.In addition,a superhydrophobic packaging is integrated into the sensor fabrication process,endowing it with waterproof capability.Utilizing a multilayer perceptron neural network,we demonstrated the function of the sensor array in estimating airspeeds and angle of attacks,achieving average solving errors of 0.15 m/s and 0.37°,respectively.
文摘In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.
文摘This paper addresses the problem of real-time position and orientation estimation of networked mobile robots in two-dimensional Euclidean space with simultaneous tracking of a rigid unknown object based on exteroceptive sensory information extracted from distributed vision systems. The sufficient and necessary conditions for team localization are proposed. A localization and object tracking approach based on statistical operators and graph searching algorithms is presented for a team of robots localized with het- erogeneous sensors. The approach was implemented in an experimental platform consisting of car-like mobile robots equipped with omnidirectional video cameras and IEEE 802.11b wireless networking. The experimental results validate the approach.
基金supported by National Natural Science Foundation of China(No.61803383).
文摘Individuals exchange information,experience and strategy based on communication.Communication is the basis for individuals to form swarms and the bridge of swarms to realize cooperative control.In this paper,the multirobot swarm and its cooperative control and communication methods are reviewed,and we summarize these methods from the task,control,and perception levels.Based on the research,the cooperative control and communication methods of intelligent swarms are divided into the following four categories:task assignment based methods(divided into market-based methods and alliance based methods),bio-inspired methods(divided into biochemical information inspired methods,vision based methods and self-organization based methods),distributed sensor fusion and reinforcement learning based methods,and we briefly define each method and introduce its basic ideas.Based on WOS database,we divide the development of each method into several stages according to the time distribution of the literature,and outline the main research content of each stage.Finally,we discuss the communication problems of intelligent swarms and the key issues,challenges and future work of each method.