Cloud computing is always adopted to enhance the computing capability of mobile systems, especially when the mobile users prefer to use some computation intensive applications. Consequently, the distributed wireless r...Cloud computing is always adopted to enhance the computing capability of mobile systems, especially when the mobile users prefer to use some computation intensive applications. Consequently, the distributed wireless relay infrastructure should be deployed to aid the traffic transmission. To further enhance the QoS provisioning goals of wireless cooperative network, this paper puts forward a multi-objective approach for distributed optimal relay selection, which takes Bit Error Rate (BER) and Secrecy Capacity (SC) into account simultaneously. Firstly, our proposal partitions the channel state into several levels according to the received signal-to-noise ratio (SNR) and describes the time-varying Rayleigh fading channel characteristics by using first order finite-state Markov model. Secondly, we model the relay selection as Restless Multi-armed Bandit optimal solution problem with respect to the channel state and the state transition probability. Finally, simulation results demonstrate the efficiency of the proposed approach which outperforms the existing ones.展开更多
In this paper,we derive the Symbol Error Probability(SEP)of cooperative systems with incremental relaying and Distributed Relay Selection(DRS).The relays remain idle when the Signal to Noise Ratio(SNR)between the sour...In this paper,we derive the Symbol Error Probability(SEP)of cooperative systems with incremental relaying and Distributed Relay Selection(DRS).The relays remain idle when the Signal to Noise Ratio(SNR)between the source and destination is larger than T.Otherwise,we activate a relay using DRS.Relay nodes transmit only if their SNR is larger than thresholdβ.If the SNRs of more than two relays is larger thanβ,there is a collision and the destination uses only the received signal from the source.If all relays have SNR less thanβ,no relay is chosen.Thresholdβis optimized to yield the lowest SEP at the destination.Our results are compared to centralized relay selection using opportunistic Amplify and Forward(OAF),Partial and Reactive Relay Selection(PRS and RRS).We compare our results to computer simulations for Rayleigh fading channels.展开更多
基金supported by National Natural Science Foundation of China under Grant No.60971083Science Technology Innovation Foundationfor Young Teachers in BUPT under Grant No.2011RC0306+1 种基金State Major Science and Technology Special Projects under Grant No.2011ZX03005-002-02 National International Science and Technology Cooperation Project of China under Grant No.2010DFA11320
文摘Cloud computing is always adopted to enhance the computing capability of mobile systems, especially when the mobile users prefer to use some computation intensive applications. Consequently, the distributed wireless relay infrastructure should be deployed to aid the traffic transmission. To further enhance the QoS provisioning goals of wireless cooperative network, this paper puts forward a multi-objective approach for distributed optimal relay selection, which takes Bit Error Rate (BER) and Secrecy Capacity (SC) into account simultaneously. Firstly, our proposal partitions the channel state into several levels according to the received signal-to-noise ratio (SNR) and describes the time-varying Rayleigh fading channel characteristics by using first order finite-state Markov model. Secondly, we model the relay selection as Restless Multi-armed Bandit optimal solution problem with respect to the channel state and the state transition probability. Finally, simulation results demonstrate the efficiency of the proposed approach which outperforms the existing ones.
文摘In this paper,we derive the Symbol Error Probability(SEP)of cooperative systems with incremental relaying and Distributed Relay Selection(DRS).The relays remain idle when the Signal to Noise Ratio(SNR)between the source and destination is larger than T.Otherwise,we activate a relay using DRS.Relay nodes transmit only if their SNR is larger than thresholdβ.If the SNRs of more than two relays is larger thanβ,there is a collision and the destination uses only the received signal from the source.If all relays have SNR less thanβ,no relay is chosen.Thresholdβis optimized to yield the lowest SEP at the destination.Our results are compared to centralized relay selection using opportunistic Amplify and Forward(OAF),Partial and Reactive Relay Selection(PRS and RRS).We compare our results to computer simulations for Rayleigh fading channels.